Investigation of the mechanism of action of chemical constituents of celery seed against gout disease using network pharmacology, molecular docking, and molecular dynamics simulations

被引:3
|
作者
Hang, Nguyen Thu [1 ]
Han, Do Khai [1 ]
My, Than Thi Kieu [1 ]
Phuong, Nguyen Van [1 ]
机构
[1] Hanoi Univ Pharm, Fac Pharmacognosy & Tradit Med, Dept Pharmacognosy, Hanoi, Vietnam
来源
关键词
Celery seed; gout; network pharmacology; molecular docking; molecular dynamics; SCORING FUNCTION;
D O I
10.1080/07391102.2023.2213337
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Celery (Apium graveolens L.) has long been considered as a potential herbal medicine for the prevention and treatment of gout. However, the relationship between the chemical constituents and pharmacological activities of this medicinal plant has not been fully investigated yet. Therefore, this study aims to apply network pharmacology, molecular docking and molecular dynamics to explore the relationship between the chemical constituents of celery seed and its biological effects in the treatment of gout. Network pharmacology was built and analyzed based on the data collected from GeneCards, OMIM databases and SwissTargetPrediction web server using Cytoscape 3.9.0 software. The GO and KEGG pathway analysis of the potential targets of celery seed related to gout disease was performed using the ShinyGO v0.75 app. Molecular docking and molecular dynamics were carried out using Autodock vina and NAMD 2.14 software, respectively. The network analysis identified 16 active compounds and thirteen key targets of celery seed in the treatment of gout. The GO analysis and the KEGG pathway enrichment analysis suggested that the mechanism of action of the chemical constituents of celery seed might be involved in several pathways, notably the PI3K-Akt signaling pathway, Ras signaling pathway, and HIF-1 signaling pathway, respectively. Molecular docking and molecular dynamics revealed that apiumetin might be an important chemical that plays a key role in the pharmacological effect of celery seed. These results might be useful to select the Q-markers to control the quality of the products from celery seeds.Communicated by Ramaswamy H. Sarma
引用
收藏
页码:2834 / 2845
页数:12
相关论文
共 50 条
  • [31] Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation
    Chen, Xu
    Sun, Bo
    Zeng, Jia
    Yu, Zhangtao
    Liu, Jie
    Tan, Zhiguo
    Li, Yuhang
    Peng, Chuang
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (08) : 5789 - 5806
  • [32] Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation to Elucidate the Molecular Targets and Potential Mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis
    Adnan, Mohd
    Siddiqui, Arif Jamal
    Ashraf, Syed Amir
    Bardakci, Fevzi
    Alreshidi, Mousa
    Badraoui, Riadh
    Noumi, Emira
    Tepe, Bektas
    Sachidanandan, Manojkumar
    Patel, Mitesh
    PATHOGENS, 2023, 12 (11):
  • [33] Investigation of the potential mechanism of the Shugan Xiaozhi decoction for the treatment of nonalcoholic fatty liver disease based on network pharmacology, molecular docking and molecular dynamics simulation
    Yang, Rong
    Yang, Huili
    Jiang, Dansheng
    Xu, Linyi
    Feng, Lian
    Xing, Yufeng
    PEERJ, 2022, 10
  • [34] Exploration of Cannabis constituents as potential candidates against diabetes mellitus disease using molecular docking, dynamics simulations and ADMET investigations
    Abchir, Oussama
    Daoui, Ossama
    Nour, Hassan
    Yamari, Imane
    Elkhattabi, Souad
    Errougui, Abdelkbir
    Chtita, Samir
    SCIENTIFIC AFRICAN, 2023, 21
  • [35] Investigation of the molecular mechanism of Danggui Buxue tang in treating lung cancer using network pharmacology and molecular docking techniques
    Zhu, Dantong
    Li, Shun
    Xu, Long
    Ren, Xijing
    Wang, Shudong
    Chen, Jianjun
    Zhao, Ershu
    Zheng, Zhendong
    NATURAL PRODUCT RESEARCH, 2024,
  • [36] Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi-target pharmacology of fenugreek against diabetes
    Luo, Wenfeng
    Deng, Jie
    He, Jiecheng
    Yin, Liang
    You, Rong
    Zhang, Lingkun
    Shen, Jian
    Han, Zeping
    Xie, Fangmei
    He, Jinhua
    Guan, Yanqing
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2023, 27 (14) : 1959 - 1974
  • [37] Molecular mechanism of action of Liuwei Dihuang pill for the treatment of osteoporosis based on network pharmacology and molecular docking
    Feng, Peng
    Che, Ying
    Chen, De-Qiang
    EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE, 2020, 33
  • [38] Exploring the Potential Mechanism of Danshen in the Treatment of Concurrent Ischemic Heart Disease and Depression Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation
    Liu, Zhiyao
    Huang, Hailiang
    Yu, Ying
    Jia, Yuqi
    Dang, Xiaowen
    Wang, Yajie
    Huang, Lei
    NATURAL PRODUCT COMMUNICATIONS, 2022, 17 (12)
  • [39] Mechanism interpretation of Guhan Yangshengjing for protection against Alzheimer's disease by network pharmacology and molecular docking
    Cheung, Suet
    Zhong, Yuan
    Wu, Lei
    Jia, Xiaomeng
    He, Meng-Qi
    Ai, Yongjian
    Jiao, Qisen
    Liang, Qionglin
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 328
  • [40] Exploring the mechanism of action of total glucosides of paeony against autoimmune thyroiditis based on network pharmacology and molecular docking
    Su, Jin
    Dong, Youqing
    Yu, Xinran
    Zhang, Limin
    Li, Wen
    MEDICINE, 2023, 102 (48) : E36290