Stress-dependent macromolecular crowding in the mitochondrial matrix

被引:12
|
作者
Bulthuis, Elianne P. [1 ]
Dieteren, Cindy E. J. [1 ,2 ,11 ]
Bergmans, Jesper [3 ]
Berkhout, Job [1 ]
Wagenaars, Jori A. [1 ]
van de Westerlo, Els M. A. [1 ]
Podhumljak, Emina [1 ,10 ]
Hink, Mark A. [4 ]
Hesp, Laura F. B. [1 ]
Rosa, Hannah S. [5 ]
Malik, Afshan N. [5 ]
Lindert, Mariska Kea-te [2 ]
Willems, Peter H. G. M. [1 ]
Gardeniers, Han J. G. E. [6 ,7 ]
den Otter, Wouter K. [7 ,8 ]
Adjobo-Hermans, Merel J. W. [1 ]
Koopman, Werner J. H. [3 ,9 ]
机构
[1] Radboud Univ Med Ctr Radboudumc, Radboud Inst Mol Life Sci RIMLS, Radboud Ctr Mitochondrial Med RCMM, Dept Biochem, Nijmegen, Netherlands
[2] Radboudumc, Electron Microscopy Ctr, Dept Cell Biol, Nijmegen, Netherlands
[3] Radboud Univ Med Ctr Radboudumc, Amalia Childrens Hosp, Radboud Inst Mol Life Sci RIMLS, Radboud Ctr Mitochondrial Med RCMM, Nijmegen, Netherlands
[4] Univ Amsterdam, Swammerdam Inst Life Sci, Amsterdam, Netherlands
[5] Kings Coll London, Dept Diabet, London, England
[6] Univ Twente, Mesoscale Chem Syst, Enschede, Netherlands
[7] Univ Twente, MESA Inst Nanotechnol, Enschede, Netherlands
[8] Univ Twente, Fac Engn Technol, Thermal & Fluid Engn, Enschede, Netherlands
[9] Wageningen Univ, Human & Anim Physiol, Wageningen, Netherlands
[10] Amsterdam UMC, Dept Human Genet, Amsterdam, Netherlands
[11] Protinhi Therapeut, Nijmegen, Netherlands
来源
EMBO JOURNAL | 2023年 / 42卷 / 07期
关键词
chloramphenicol; diffusion; FRAP; macromolecular crowding; mitochondria; GREEN FLUORESCENT PROTEIN; ACID CYCLE ENZYMES; DIFFUSION-COEFFICIENTS; ESCHERICHIA-COLI; STEADY-STATE; VISCOSITY; CYTOPLASM; DYNAMICS; MOBILITY; SENSOR;
D O I
10.15252/embj.2021108533
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Settlement calculation with stress-dependent parameters
    Aalto, A.
    Vepsalainen, P.
    Ravaska, O.
    Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vols 1-5: GEOTECHNOLOGY IN HARMONY WITH THE GLOBAL ENVIRONMENT, 2005, : 1007 - 1010
  • [22] Numerical modeling of stress-dependent permeability
    Bai, M.
    Meng, F.
    Elsworth, D.
    Zaman, M.
    Roegiers, J.-C.
    International Journal of Rock Mechanics and Mining Sciences, 1997, 34 (3-4): : 1 - 2
  • [23] Stress-dependent permeability: Characterization and modeling
    Davies, JP
    Davies, DK
    SPE JOURNAL, 2001, 6 (02): : 224 - 235
  • [24] Stress-dependent seismic anisotropy of shales
    Sayers, CM
    GEOPHYSICS, 1999, 64 (01) : 93 - 98
  • [25] Aldosterone and stress-dependent arterial hypertension
    E. V. Antonov
    A. L. Markel’
    G. S. Yakobson
    Bulletin of Experimental Biology and Medicine, 2011, 152 : 188 - 191
  • [26] Stress-Dependent Elasticity of TiAlN Coatings
    Hans, Marcus
    Patterer, Lena
    Music, Denis
    Holzapfel, Damian M.
    Evertz, Simon
    Schnabel, Volker
    Stelzer, Bastian
    Primetzhofer, Daniel
    Voelker, Bernhard
    Widrig, Beno
    Eriksson, Anders O.
    Ramm, Juergen
    Arndt, Mirjam
    Rudigier, Helmut
    Schneider, Jochen M.
    COATINGS, 2019, 9 (01)
  • [27] STRESS-DEPENDENT NATURE OF APOMORPHINE HYPERTHERMIA
    SNOW, AE
    HORITA, A
    BRAIN RESEARCH, 1976, 117 (01) : 163 - 168
  • [28] STRESS-DEPENDENT RAMAN SPECTRA OF QUARTZ
    EDWARDS, DF
    SHE, CY
    HARKER, YD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 810 - &
  • [29] Stress-dependent matrix crack opening in SiC/SiC composites: theory and analytical prediction
    Li, Longbiao
    COMPOSITE INTERFACES, 2023, 30 (06) : 685 - 707
  • [30] Macromolecular crowding agent dependent extracellular matrix deposition and growth factor retention in human corneal fibroblast cultures
    Gurdal, Mehmet
    Zeugolis, Dimitrios I.
    EXPERIMENTAL EYE RESEARCH, 2025, 250