Convergence Analysis and Latency Minimization for Semi-Federated Learning in Massive IoT Networks

被引:5
|
作者
Ren, Jianyang [1 ]
Ni, Wanli [1 ]
Tian, Hui [1 ]
Nie, Gaofeng [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; over-the-air computation; network pruning; convergence analysis; latency minimization;
D O I
10.1109/TGCN.2023.3309657
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
As the number of sensors becomes massive in Internet of Things (IoT) networks, the amount of data is humongous. To process data in real-time while protecting user privacy, federated learning (FL) has been regarded as an enabling technique to push edge intelligence into IoT networks with massive devices. However, FL latency increases dramatically due to the increase of the number of parameters in deep neural network and the limited computation and communication capabilities of IoT devices. To address this issue, we propose a semi-federated learning (SemiFL) paradigm in which network pruning and over-the-air computation are efficiently applied. To be specific, each small base station collects the raw data from its served sensors and trains its local pruned model. After that, the global aggregation of local gradients is achieved through over-the-air computation. We first analyze the performance of the proposed SemiFL by deriving its convergence upper bound. To reduce latency, a convergence-constrained SemiFL latency minimization problem is formulated. By decoupling the original problem into several sub-problems, iterative algorithms are designed to solve them efficiently. Finally, numerical simulations are conducted to verify the effectiveness of our proposed scheme in reducing latency and guaranteeing the identification accuracy.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 50 条
  • [41] Wireless Federated Learning With Hybrid Local and Centralized Training: A Latency Minimization Design
    Huang, Ning
    Dai, Minghui
    Wu, Yuan
    Quek, Tony Q. S.
    Shen, Xuemin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (01) : 248 - 263
  • [42] Secrecy Driven Federated Learning via Cooperative Jamming: An Approach of Latency Minimization
    Wang, Tianshun
    Li, Yang
    Wu, Yuan
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (04) : 1687 - 1703
  • [43] Energy-Efficient Federated Learning in IoT Networks
    Kong, Deyi
    You, Zehua
    Chen, Qimei
    Wang, Juanjuan
    Hu, Jiwei
    Xiong, Yunfei
    Wu, Jing
    SMART COMPUTING AND COMMUNICATION, 2022, 13202 : 26 - 36
  • [44] Federated Learning for IoT Networks: Enhancing Efficiency and Privacy
    Zahri, Sofia
    Bennouri, Hajar
    Chehri, Abdellah
    Abdelmoniem, Ahmed M.
    2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2023,
  • [45] Explainable Federated Learning for Botnet Detection in IoT Networks
    Kalakoti, Rajesh
    Bahsi, Hayretdin
    Nomm, Sven
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 22 - 29
  • [46] Federated Deep Learning for Intrusion Detection in IoT Networks
    Belarbi, Othmane
    Spyridopoulos, Theodoros
    Anthi, Eirini
    Mavromatis, Ioannis
    Carnelli, Pietro
    Khan, Aftab
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 237 - 242
  • [47] Semi-Supervised Federated Learning Over Heterogeneous Wireless IoT Edge Networks: Framework and Algorithms
    Albaseer, Abdullatif
    Abdallah, Mohamed
    Al-Fuqaha, Ala
    Erbad, Aiman
    Dobre, Octavia A.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24): : 25626 - 25642
  • [48] Federated Learning for Privacy-Preserving Machine Learning in IoT Networks
    Anitha, G.
    Jegatheesan, A.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 338 - 342
  • [49] AccDFL: Accelerated Decentralized Federated Learning for Healthcare IoT Networks
    Wei, Mengli
    Yu, Wenwu
    Chen, Duxin
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5329 - 5345
  • [50] Federated Learning for Decentralized DDoS Attack Detection in IoT Networks
    Alhasawi, Yaser
    Alghamdi, Salem
    IEEE ACCESS, 2024, 12 : 42357 - 42368