Flow map;
Regularity;
Quasi-linear;
Nonlinear Burgers type dispersive equations;
Water Waves system;
Gravity-capillary equations;
Cole-Hopf gauge transform;
GLOBAL WELL-POSEDNESS;
BENJAMIN-ONO-EQUATION;
PERTURBATIONS;
KDV;
D O I:
10.1007/s42286-023-00075-x
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the first part of this paper we prove that the flow associated to a dispersive Burgers equation with a non local term of the form |D|(alpha-1) partial derivative(x)u, alpha is an element of [1, +infinity[ is Lipschitz from bounded sets of H-0(s) (T; R) to C-0([0, T], H (s-(2-alpha)+)(0) (T; R)) for T > 0 and s > [ (alpha)/(alpha 2)] (1)/(2), where H-s (0) alpha-1are the Sobolev spaces of functions with 0 mean value, proving that the result obtained in Said (A geometric proof of the quasi-linearity of the water-waves system and the incompressible Euler equations) is optimal on the torus. The proof relies on a paradifferential generalization of a complex Cole-Hopf gauge transformation introduced by Tao (J Hyperbol Differ Equ 1:27-49, 2004) for the Benjamin-Ono equation. For this we prove a generalization of the Baker-Campbell- Hausdorff formula for flows of hyperbolic paradifferential equations and prove the stability of the class of paradifferential operators modulo more regular remainders, under conjugation by such flows. For this we prove a new characterization of paradif-ferential operators in the spirit of Beals (Duke Math J 44:45-57, 1977). In the second part of this paper we use a paradifferential version of the previous method to prove that a re-normalization of the flow of the one dimensional periodic gravity-capillary equation is Lipschitz from bounded sets of H-s to C-0([0, T], H-2(s- 1/) ) for T > 0 and s > 3 + 10px(1)/(2) This proves that the result obtained in Said (A geometric proof of the quasi-linearity of the water-waves system and the incompressible Euler equations) is optimal for the water waves system.
机构:
Univ Miyazaki, Fac Educ, 1-1,Gakuenkibanadai Nishi, Miyazaki 8892192, JapanUniv Miyazaki, Fac Educ, 1-1,Gakuenkibanadai Nishi, Miyazaki 8892192, Japan
Hirayama, Hiroyuki
Oka, Yasuyuki
论文数: 0引用数: 0
h-index: 0
机构:
Daido Univ, Sch Liberal Arts & Sci, 10-3 Takiharu Cho,Minami Ku, Nagoya 4578530, JapanUniv Miyazaki, Fac Educ, 1-1,Gakuenkibanadai Nishi, Miyazaki 8892192, Japan
机构:
Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
Capital Normal Univ, Dept Math, Beijing 100037, Peoples R ChinaJiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
Wang, Lijuan
Shao, Jianying
论文数: 0引用数: 0
h-index: 0
机构:
Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R ChinaJiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
IMAS CONICET, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
Amster, Pablo
Deboli, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150, RA-1613 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina
Deboli, Alberto
Pinto, Manuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, Fac Ciencias, Dept Matemat, Casilla 653, Santiago, ChileUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pab 1, RA-1428 Buenos Aires, DF, Argentina