Meta semi-supervised medical image segmentation with label hierarchy

被引:2
|
作者
Xu, Hai [1 ]
Xie, Hongtao [1 ]
Tan, Qingfeng [2 ]
Zhang, Yongdong [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230026, Anhui, Peoples R China
[2] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 511442, Guangdong, Peoples R China
关键词
Medical image segmentation; Semi-supervised learning; Consistency regularization; Domain generalization;
D O I
10.1007/s13755-023-00222-1
中图分类号
R-058 [];
学科分类号
摘要
Semi-supervised learning (SSL) has attracted increasing attention in medical image segmentation, where the mainstream usually explores perturbation-based consistency as a regularization to leverage unlabelled data. However, unlike directly optimizing segmentation task objectives, consistency regularization is a compromise by incorporating invariance towards perturbations, and inevitably suffers from noise in self-predicted targets. The above issues result in a knowledge gap between supervised guidance and unsupervised regularization. To bridge the knowledge gap, this work proposes a meta-based semi-supervised segmentation framework with the exploitation of label hierarchy. Two main prominent components named Divide and Generalize, and Label Hierarchy, are built in this work. Concretely, rather than merging all knowledge indiscriminately, we dynamically divide consistency regularization from supervised guidance as different domains. Then, a domain generalization technique is introduced with a meta-based optimization objective which ensures the update on supervised guidance should generalize to the consistency regularization, thereby bridging the knowledge gap. Furthermore, to alleviate the negative impact of noise in self-predicted targets, we propose to distill the noisy pixel-level consistency by exploiting label hierarchy and extracting hierarchical consistencies. Comprehensive experiments on two public medical segmentation benchmarks demonstrate the superiority of our framework to other semi-supervised segmentation methods, with new state-of-the-art results.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Consistency and adversarial semi-supervised learning for medical image segmentation
    Tang, Yongqiang
    Wang, Shilei
    Qu, Yuxun
    Cui, Zhihua
    Zhang, Wensheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [22] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    Medical Image Analysis, 2022, 81
  • [23] Data augmentation strategies for semi-supervised medical image segmentation
    Wang, Jiahui
    Ruan, Dongsheng
    Li, Yang
    Wang, Zefeng
    Wu, Yongquan
    Tan, Tao
    Yang, Guang
    Jiang, Mingfeng
    PATTERN RECOGNITION, 2025, 159
  • [24] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [25] Dual Consistency Regularization for Semi-supervised Medical Image Segmentation
    Wei, Lin
    Sha, Runxuan
    Shi, Yucheng
    Wang, Qingxian
    Shi, Lei
    Gao, Yufei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14866 : 197 - 206
  • [26] PICK: Predict and Mask for Semi-supervised Medical Image Segmentation
    Zeng, Qingjie
    Lu, Zilin
    Xie, Yutong
    Xia, Yong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025,
  • [27] CCA: Contrastive cluster assignment for supervised and semi-supervised medical image segmentation
    Zhu, Jinghua
    Huang, Chengying
    Xi, Heran
    Cui, Hui
    NEURAL NETWORKS, 2025, 188
  • [28] SEMI-SUPERVISED HYPERSPECTRAL IMAGE SEGMENTATION
    Li, Jun
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 215 - +
  • [29] MULTIVALUED LABEL DIFFUSION FOR SEMI-SUPERVISED SEGMENTATION
    Buyssens, Pierre
    Lezoray, Olivier
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3275 - 3279
  • [30] Consistency-Guided Meta-learning for Bootstrapping Semi-supervised Medical Image Segmentation
    Wei, Qingyue
    Yu, Lequan
    Li, Xianhang
    Shao, Wei
    Xie, Cihang
    Xing, Lei
    Zhou, Yuyin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 183 - 193