Statistical learning for species distribution models in ecological studies

被引:0
|
作者
Komori, Osamu [1 ]
Saigusa, Yusuke [2 ]
Eguchi, Shinto [3 ]
机构
[1] Seikei Univ, Dept Comp & Informat Sci, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 1808633, Japan
[2] Yokohama City Univ, Sch Med, Dept Biostat, 3-9 Fukuura,Kanazawa, Yokohama, Kanagawa 2360004, Japan
[3] Inst Stat Math, Res Ctr Med & Hlth Data Sci, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
Information divergence; Integrated species distribution models; Poisson point process; Species distribution models; POINT PROCESS MODELS; LOGISTIC-REGRESSION; ROBUST; EQUIVALENCE; INTERFACE; MAXENT; BIAS;
D O I
10.1007/s42081-023-00206-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss species distribution models (SDM) for biodiversity studies in ecology. SDM plays an important role to estimate abundance of a species based on environmental variables that are closely related with the habitat of the species. The resultant habitat map indicates areas where the species is likely to live, hence it is essential for conservation planning and reserve selection. We especially focus on a Poisson point process and clarify relations with other statistical methods. Then we discuss a Poisson point process from a view point of information divergence, showing the Kullback-Leibler divergence of density functions reduces to the extended Kullback-Leibler divergence of intensity functions. This property enables us to extend the Poisson point process to that derived from other divergence such as beta and gamma divergences. Finally, we discuss integrated SDM and evaluate the estimating performance based on the Fisher information matrices.
引用
收藏
页码:803 / 826
页数:24
相关论文
共 50 条
  • [41] Active learning with statistical models
    Cohn, DA
    Ghahramani, Z
    Jordan, MI
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 : 129 - 145
  • [42] Active learning with statistical models
    Massachusetts Inst of Technology, Cambridge, United States
    J Artif Intell Res, (129-145):
  • [43] STATISTICAL LEARNING-MODELS
    WEITZMAN, RA
    REVIEW OF EDUCATIONAL RESEARCH, 1963, 33 (05) : 543 - 555
  • [44] Using species distribution models to select species resistant to climate change for ecological restoration of bowe in West Africa
    Padonou, Elie A.
    Teka, Oscar
    Bachmann, Yvonne
    Schmidt, Marco
    Lykke, Anne Mette
    Sinsin, Brice
    AFRICAN JOURNAL OF ECOLOGY, 2015, 53 (01) : 83 - 92
  • [45] Classification of Mycena and Marasmius Species Using Deep Learning Models: An Ecological and Taxonomic Approach
    Ekinci, Fatih
    Ugurlu, Guney
    Ozcan, Giray Sercan
    Acici, Koray
    Asuroglu, Tunc
    Kumru, Eda
    Guzel, Mehmet Serdar
    Akata, Ilgaz
    SENSORS, 2025, 25 (06)
  • [46] Statistical Models in Clinical Studies
    Matsui, Shigeyuki
    Le-Rademacher, Jennifer
    Mandrekar, Sumithra J.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (05) : 734 - 739
  • [47] On the Statistical Mechanics of Alien Species Distribution
    Bowler, Michael G.
    Kelly, Colleen K.
    ENTROPY, 2017, 19 (12):
  • [48] LEARNING TO SIMULATE ECOLOGICAL MODELS ON A MICROCOMPUTER
    EWEL, KC
    ECOLOGICAL MODELLING, 1989, 47 (1-2) : 7 - 17
  • [49] Species Distribution Models and Ecological Suitability Analysis for Potential Tick Vectors of Lyme Disease in Mexico
    Illoldi-Rangel, Patricia
    Rivaldi, Chissa-Louise
    Sissel, Blake
    Fryxell, Rebecca Trout
    Gordillo-Perez, Guadalupe
    Rodriguez-Moreno, Angel
    Williamson, Phillip
    Montiel-Parra, Griselda
    Sanchez-Cordero, Victor
    Sarkar, Sahotra
    JOURNAL OF TROPICAL MEDICINE, 2012, 2012
  • [50] Ecological coherence of marine protected area networks: a spatial assessment using species distribution models
    Sundblad, Goran
    Bergstrom, Ulf
    Sandstrom, Alfred
    JOURNAL OF APPLIED ECOLOGY, 2011, 48 (01) : 112 - 120