Transient analysis and techno-economic assessment of thermal energy storage integrated with solar air heater for energy management in drying

被引:5
|
作者
Hassan, Ali [1 ]
Nikbakht, Ali M. [1 ]
Fawzia, Sabrina [2 ]
Yarlagada, Prasad K. D. V. [1 ]
Karim, Azharul [1 ]
机构
[1] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Australia
[2] Queensland Univ Technol, Sch Civil & Environm Engn, Brisbane, Australia
关键词
Thermal energy storage; Drying; Charging; Discharging; Energy stored; Energy recovered; PERFORMANCE ANALYSIS; DRYER; SYSTEM; TECHNOLOGIES; EXERGY; MODEL;
D O I
10.1016/j.solener.2023.112043
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The integration of thermal energy storage (TES) system with solar air heater holds an immense potential for optimising the energy management in drying application. In this pioneer research, a transient thermodynamic model of conical shaped rock bed TES has been developed, and the economic analysis of hybrid V-groove double pass solar air heater (SAH)-TES has been studied, offering a unique perspective on the feasibility and economic viability of hybrid SAH-TES for drying application. By considering the time dependent dynamics of energy demand, the model predicts energy stored and released by the system during charging and discharging with a considerable error of 9.9%, as validated with a pilot scale experimental setup. The numerical and experimental results showed that the stored and recovered energy is highly dependent on the inlet temperature and flow rate of air. Notably, the optimised conical shaped TES has the capacity of storing 15.6 kWh of energy during six-hour charging period enabling the recovery of 33% of the stored energy to power the dryer during the discharge period. Moreover, the pressure drop across the TES observed to be 1306.37 Pa/m at 0.050 kg/s, which quantify the power required for fan to overcome such pressure drop to be 4.22 kW Furthermore, the economic assessment showcased remarkable reduction in energy payback period, dropping from 0.7 years to 0.5 years using hybrid SAH-TES dryer compared to SAH dryer. This demonstrates the superior economic value of the hybrid SAH-TES dryer paving the way for the scalability and widespread adoption of low-carbon drying industry.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Techno-Economic Assessment for Optimal Energy Storage Mix
    Spataru, Catalina
    Kok, Yen Chung
    Barrett, Mark
    Sweetnam, Trevor
    SUSTAINABILITY IN ENERGY AND BUILDINGS: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE SEB-15, 2015, 83 : 515 - 524
  • [22] Techno-economic assessment of substituting natural gas based heater with thermal energy storage system in parabolic trough concentrated solar power plant
    Poghosyan, V.
    Hassan, Mohamed I.
    RENEWABLE ENERGY, 2015, 75 : 152 - 164
  • [23] A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies
    Ndiaye, Alla
    Locment, Fabrice
    De Bernardinis, Alexandre
    Sechilariu, Manuela
    Redondo-Iglesias, Eduardo
    ENERGIES, 2022, 15 (04)
  • [24] TECHNO-ECONOMIC FEASIBILITY ANALYSIS OF SOLAR INDUSTRIAL PROCESS HEAT USING PARTICLE THERMAL ENERGY STORAGE
    Al-Ghussain, Loiy
    Johnson, Taylor
    Martinek, Janna
    Ma, Zhiwen
    PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024, 2024,
  • [25] Techno-economic analysis of latent heat thermal energy storage integrated heat pump for indoor heating
    Shan, Lianying
    Martin, Andrew
    Chiu, Justin NingWei
    ENERGY, 2024, 298
  • [26] Techno-economic Analysis of Solar Photovoltaics and Solar Thermal Energy Integration in a Chilean Brewery
    Crespo, Alicia
    Munoz, Constanza
    Cerda, Maria Teresa
    Munoz, Ivan
    Hernandez, Catalina
    Ramirez, Gonzalo
    Ibarra, Mercedes
    Dinter, Frank
    PROCEEDINGS OF THE ISES SOLAR WORLD CONFERENCE 2019 AND THE IEA SHC SOLAR HEATING AND COOLING CONFERENCE FOR BUILDINGS AND INDUSTRY 2019, 2019, : 506 - 516
  • [27] A techno-economic assessment of offshore wind coupled to offshore compressed air energy storage
    Li, Binghui
    DeCarolis, Joseph F.
    APPLIED ENERGY, 2015, 155 : 315 - 322
  • [28] Seasonal thermal energy storage: A techno-economic literature review
    Yang, Tianrun
    Liu, Wen
    Kramer, Gert Jan
    Sun, Qie
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 139
  • [29] Techno-economic and environmental analysis of an Aquifer Thermal Energy Storage (ATES) in Germany
    Simon Schüppler
    Paul Fleuchaus
    Philipp Blum
    Geothermal Energy, 7
  • [30] Techno-economic assessment of solid-gas thermochemical energy storage systems for solar thermal power applications
    Bayon, Alicia
    Bader, Roman
    Jafarian, Mehdi
    Fedunik-Hofman, Larissa
    Sun, Yanping
    Hinkley, Jim
    Miller, Sarah
    Lipinski, Wojciech
    ENERGY, 2018, 149 : 473 - 484