From regression rank scores to robust inference for censored quantile regression

被引:2
|
作者
Sun, Yuan [1 ]
He, Xuming [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Bootstrap; censored data; quantile regression; rank score; SPEARMANS-RHO; KENDALLS TAU; MULTIVARIATE; EQUALITY;
D O I
10.1002/cjs.11740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.
引用
收藏
页码:1126 / 1149
页数:24
相关论文
共 50 条
  • [41] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    Statistical Papers, 2018, 59 : 215 - 247
  • [42] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [43] Smoothed rank regression with censored data
    Heller, Glenn
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (478) : 552 - 559
  • [44] A Stochastic EM Algorithm for Quantile and Censored Quantile Regression Models
    Yang, Fengkai
    COMPUTATIONAL ECONOMICS, 2018, 52 (02) : 555 - 582
  • [45] Robust uniform inference for quantile treatment effects in regression discontinuity designs
    Chiang, Harold D.
    Hsu, Yu-Chin
    Sasaki, Yuya
    JOURNAL OF ECONOMETRICS, 2019, 211 (02) : 589 - 618
  • [46] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Yang, Jing
    Lu, Fang
    Yang, Hu
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2018, 47 (02) : 172 - 184
  • [47] Smoothed quantile regression for censored residual life
    Kyu Hyun Kim
    Daniel J. Caplan
    Sangwook Kang
    Computational Statistics, 2023, 38 : 1001 - 1022
  • [48] An estimating equation for censored and truncated quantile regression
    Frumento, Paolo
    Bottai, Matteo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 53 - 63
  • [49] Quantile regression for robust inference on varying coefficient partially nonlinear models
    Jing Yang
    Fang Lu
    Hu Yang
    Journal of the Korean Statistical Society, 2018, 47 : 172 - 184
  • [50] IDENTIFICATION AND INFERENCE IN A QUANTILE REGRESSION DISCONTINUITY DESIGN UNDER RANK SIMILARITY WITH COVARIATES
    Jin, Zequn
    Zhang, Yu
    Zhang, Zhengyu
    Zhou, Yahong
    ECONOMETRIC THEORY, 2023,