Predicting financial distress using machine learning approaches: Evidence China

被引:2
|
作者
Rahman, Md Jahidur [1 ,3 ]
Zhu, Hongtao [2 ]
机构
[1] Wenzhou Kean Univ, Wenzhou, Peoples R China
[2] Univ Edinburgh, Edinburgh, Scotland
[3] Wenzhou Kean Univ, Coll Business & Publ Management, 88 Daxue Rd, Wenzhou, Zhejiang, Peoples R China
关键词
Financial distress prediction; Machine learning; Chinese construction companies; Z; -Score; PRINCIPAL COMPONENT ANALYSIS; SUPPORT VECTOR MACHINE; CONSTRUCTION COMPANIES; BANKRUPTCY PREDICTION; FAILURE PREDICTION; CORPORATE FAILURE; CREDIT RISK; Z-SCORE; MODELS; CLASSIFICATION;
D O I
10.1016/j.jcae.2024.100403
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This study uses machine learning techniques to construct financial distress prediction (FDP) models for Chinese A -listed construction companies and compares their classification performance with conventional Z -Score models. Three machine learning algorithms (Classification and Regression Tree, AdaBoost, and CUSBoost) are used to generate machine -learning -based classifiers, and four Z -Score models (Altman Z -Score, Sorins/Voronova Z -Score, Springate, and Z -Score of Ng et al.) are selected for comparison. The sample comprises 1782 firm -year observations from Chinese A -listed construction companies on the Shenzhen and Shanghai Stock Exchanges from 2012 to 2021. The out -of -sample predicting performance of the classifiers are measured using the areas under the receiver operating characteristic curve (AUC) and under the precision -recall curve (AUPR). In additional tests, Pearson's correlation coefficients and the variance inflation factor are utilized to identify correlations among the raw financial predictors, while principal component analysis is used to address high -correlation issues among the features. Results confirm that machine learning classifiers can effectively predict financial distress for Chinese A -listed construction companies and are more accurate than Z -Score models. Furthermore, the CUSBoost classifier is identified as the most precise model based on the AUC and AUPR metrics in both primary and additional tests. This study addresses the gap concerning the application of machine learning in FDP for Chinese -listed construction companies. Additionally, the CUSBoost Algorithm is introduced into the field of FDP research for the first time. Through the comparison of machine learning and Z -Score models, this study also contributes to the literature related to the contrast between machine learning and statistical modeling techniques.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Predicting Stock Price Bubbles in China Using Machine Learning
    Wang, Yunxi
    Yampaka, Tongjai
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11): : 415 - 425
  • [22] Predicting Meridian in Chinese traditional medicine using machine learning approaches
    Wang, Yinyin
    Jafari, Mohieddin
    Tang, Yun
    Tang, Jing
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (11)
  • [23] Predicting childhood asthma using machine learning and data integration approaches
    Kothalawala, Dilini
    Murray, Clare
    Simpson, Angela
    Custovic, Adnan
    Tapper, William
    Arshad, Hasan
    Holloway, John
    Rezwan, Faisal
    CLINICAL AND EXPERIMENTAL ALLERGY, 2021, 51 (12): : 1683 - 1683
  • [24] Predicting the glass formation of metallic glasses using machine learning approaches
    Li, Zhuang
    Long, Zhilin
    Lei, Shan
    Zhang, Ting
    Liu, Xiaowei
    Kuang, Dumin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [25] Predicting the glass formation of metallic glasses using machine learning approaches
    Li, Zhuang
    Long, Zhilin
    Lei, Shan
    Zhang, Ting
    Liu, Xiaowei
    Kuang, Dumin
    Computational Materials Science, 2021, 197
  • [26] PREDICTING FUTURE ALCOHOL USE IN ADOLESCENTS USING MACHINE LEARNING APPROACHES
    Mather, Marius
    Newton, Nicola C.
    Birrell, Louise
    Teesson, Maree
    Slade, Tim
    Chapman, Cath
    Mcbride, Nyanda
    Allsop, Steve
    Hides, Leanne
    DRUG AND ALCOHOL REVIEW, 2018, 37 : S13 - S13
  • [27] Predicting the Survival Rate of Titanic Disaster Using Machine Learning Approaches
    Shetty, Jyothi
    Pallavi, S.
    Ramyashree
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [28] Predicting mortality in systemic sclerosis patients using machine learning approaches
    Jang, A.
    Patel, S.
    Patel, S.
    Shah, S.
    Lio, P.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S37 - S37
  • [29] Comparison of Machine Learning Approaches for Medium-to-Long-Term Financial Distress Predictions in the Construction Industry
    Jeong, Jiseok
    Kim, Changwan
    BUILDINGS, 2022, 12 (10)
  • [30] Evidence quality estimation using selected machine learning approaches
    Byczynska, Aleksandra
    Ganzha, Maria
    Paprzycki, Marcin
    Kutka, Mikolaj
    2020 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2020,