TS-IDS: Traffic-aware self-supervised learning for IoT Network Intrusion Detection

被引:19
|
作者
Nguyen, Hoang [1 ]
Kashef, Rasha [1 ]
机构
[1] Toronto Metropolitan Univ, Dept Elect Comp & BioMed Engn, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Intrusion detection; Internet of Things; Graph neural networks; Artificial intelligence; DETECTION SYSTEM;
D O I
10.1016/j.knosys.2023.110966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With recent advances in the Internet of Things (IoT) technology, more people can have instant and easy access to the IoT network of vast and diverse interconnected devices (e.g., surveillance cameras, motion sensors, or smart watches). This trend leads to a significant increase in the frequency and complexity of cyber attacks in the IoT network. Further, these attacks inflict severe financial and privacy damages to individuals and evince the need to develop a more effective and robust network intrusion detection system (NIDS). Network Intrusion Detection (NID) aims to identify the attacks in the networked devices, which is an essential task to protect and maintain Cyber Security. Although recent Machine Learning-based methods have developed and provided more efficient non-human intervention solutions to this problem, these methods still have some unsolved issues. One of the main limitations of existing solutions is that most focus on extracting the features at the flow level independently and ignore their interactions in the network, which impacts the detection performance. To address this problem, in this paper, we propose a Traffic-aware Self-supervised learning for IoT Network Intrusion Detection System, namely TS-IDS, which aims to capture the flow relationships between the network entities. Our approach leverages both node and edge features for improved performance. Additionally, we incorporate auxiliary property-based self-supervised learning (SSL) to enhance the graph representation, even in the absence of labelled data. We conducted experiments on two real-world datasets, NF-ToN-IoT and NF-BoT-IoT. We compared the proposed model with state-of-the-art baseline models to demonstrate the potential of our proposed framework. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] IoT Wireless Intrusion Detection and Network Traffic Analysis
    Ponnusamy, Vasaki
    Yichiet, Aun
    Jhanjhi, N. Z.
    Humayun, Mamoona
    Almufareh, Maram Fahhad
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 40 (03): : 865 - 879
  • [32] IoT Wireless Intrusion Detection and Network Traffic Analysis
    Ponnusamy V.
    Yichiet A.
    Jhanjhi N.Z.
    Humayun M.
    Almufareh M.F.
    Computer Systems Science and Engineering, 2021, 40 (03): : 865 - 879
  • [33] Malicious Traffic Identification with Self-Supervised Contrastive Learning
    Yang, Jin
    Jiang, Xinyun
    Liang, Gang
    Li, Siyu
    Ma, Zicheng
    SENSORS, 2023, 23 (16)
  • [34] Traffic Data Imputation Based on Self-Supervised Learning
    Zhou C.
    Lin P.
    Yan M.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (04): : 101 - 114
  • [35] Uncertainty-Aware Graph Self-Supervised Learning for Hyperspectral Image Change Detection
    Jian, Ping
    Ou, Yimin
    Chen, Keming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 19
  • [36] SELF-SUPERVISED LEARNING FOR ANOMALOUS SOUND DETECTION
    Wilkinghoff, Kevin
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 276 - 280
  • [37] Anomaly Detection on Electroencephalography with Self-supervised Learning
    Xu, Junjie
    Zheng, Yaojia
    Mao, Yifan
    Wang, Ruixuan
    Zheng, Wei-Shi
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 363 - 368
  • [38] Generalizing Supervised Learning for Intrusion Detection in IoT Mesh Networks
    Keipour, Hossein
    Hazra, Saptarshi
    Finne, Niclas
    Voigt, Thiemo
    UBIQUITOUS SECURITY, 2022, 1557 : 214 - 228
  • [39] Part Aware Contrastive Learning for Self-Supervised Action Recognition
    Hua, Yilei
    Wu, Wenhan
    Zheng, Ce
    Lu, Aidong
    Liu, Mengyuan
    Chen, Chen
    Wu, Shiqian
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 855 - 863
  • [40] Knowledge-Aware Graph Self-Supervised Learning for Recommendation
    Li, Shanshan
    Jia, Yutong
    Wu, You
    Wei, Ning
    Zhang, Liyan
    Guo, Jingfeng
    ELECTRONICS, 2023, 12 (23)