Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Trophoblast Cell Proliferation and Migration by Targeting TFPI2 in Preeclampsia

被引:1
|
作者
Chen, Ying [1 ]
Zhou, Chenchen [1 ]
Zhao, Xiaobo [1 ]
Che, Ronghua [1 ]
Wu, Yuelin [1 ,2 ]
Wan, Sheng [1 ,2 ]
Pei, Jinda [1 ]
Yao, Liping [3 ]
Hua, Xiaolin [1 ,2 ]
机构
[1] Tongji Univ, Shanghai Matern & Infant Hosp 1, Dept Obstet, Sch Med, Shanghai 201204, Peoples R China
[2] Tongji Univ, Shanghai Matern & Infant Hosp 1, Shanghai Key Lab Maternal Med, Sch Med, Shanghai 201204, Peoples R China
[3] Tongji Univ, Shanghai Matern & Infant Hosp 1, Dept Ultrasound, Sch Med, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
FACTOR PATHWAY INHIBITOR-2; PREGNANCY-INDUCED HYPERTENSION; EXOSOMES; BIOMARKERS; PLACENTA;
D O I
10.1155/2023/7927747
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Preeclampsia is a pregnancy disorder characterized by systemic organ damage and high blood pressure. It has been reported that microRNA-195 (miR-195) is associated with preeclampsia. In this study, we discovered the target of miR-195 in regulating human extravillous cytotrophoblast-derived transformed cell proliferation and migration. We analyzed the clinicopathological factors of preeclampsia and normal pregnancies. The messenger ribonucleic acid (mRNA) levels of miR-195 and tissue factor pathway inhibitor 2 (TFPI2) were measured in placental tissues derived from normal and preeclampsia patients by real-time polymerase chain reaction (PCR). Human umbilical cord mesenchymal stem cell (hUC-MSC)-derived extracellular vesicles were verified by western blot. HTR8-S/Vneo cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and cell migration rate was assessed by the transwell assay. Relative luciferase activities were measured in TFPI2 wild-type (WT) and mutant cells. miR-195 expression was negatively correlated with TFPI2 mRNA levels in preeclampsia patients. Extracellular vesicles derived from hUC-MSCs enhanced HTR8-S/Vneo cell proliferation and migration. In addition, miR-195 isolated from hUC-MSCs enhanced HTR8-S/Vneo cell proliferation and migration by targeting TFPI2. Our findings demonstrate that the upregulation of miR-195 in extracellular vesicles derived from hUC-MSCs promotes HTR8-S/Vneo cell proliferation and migration by targeting TFPI2.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Stem cell proteomes:: A profile of human mesenchymal stem cells derived from umbilical cord blood
    Feldmann, RE
    Bieback, K
    Maurer, MH
    Kalenka, A
    Bürgers, HF
    Gross, B
    Hunzinger, C
    Klüter, H
    Kuschinsky, W
    Eichler, H
    ELECTROPHORESIS, 2005, 26 (14) : 2749 - 2758
  • [32] Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural Differentiation of Neural Progenitor Cells
    Park, So-Yeon
    Kim, Da-Seul
    Kim, Hyun-Mun
    Lee, Jun-Kyu
    Hwang, Dong-Youn
    Kim, Tae-Hyung
    You, Seungkwon
    Han, Dong Keun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [33] Comparison of Curative Effect of Human Umbilical Cord-Derived Mesenchymal Stem Cells and Their Small Extracellular Vesicles in Treating Osteoarthritis
    Tang, Shijie
    Chen, Penghong
    Zhang, Haoruo
    Weng, Haiyan
    Fang, Zhuoqun
    Chen, Caixiang
    Peng, Guohao
    Gao, Hangqi
    Hu, Kailun
    Chen, Jinghua
    Chen, Liangwan
    Chen, Xiaosong
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2021, 16 : 8185 - 8202
  • [34] Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro
    Xie, Min
    Li, Cuifang
    She, Zhou
    Wu, Feifeng
    Mao, Jueyi
    Hun, Marady
    Luo, Senlin
    Wan, Wuqing
    Tian, Jidong
    Wen, Chuan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [35] Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro
    Min Xie
    Cuifang Li
    Zhou She
    Feifeng Wu
    Jueyi Mao
    Marady Hun
    Senlin Luo
    Wuqing Wan
    Jidong Tian
    Chuan Wen
    Scientific Reports, 12
  • [36] Advances in human umbilical cord mesenchymal stem cells-derived extracellular vesicles and biomaterial assemblies for endometrial injury treatment
    Zhang, Wan-Yu
    Wang, Han-Bi
    Deng, Cheng-Yan
    WORLD JOURNAL OF STEM CELLS, 2025, 17 (01):
  • [37] Using extracellular vesicles derived from human umbilical cord mesenchymal stem cells for a topical coating promotes oral mucositis healing in rats
    Gao, Zhe
    Guan, Lixun
    Liu, Zhanxiang
    Yan, Fei
    Fang, Shu
    Zhang, Xiangmei
    Gao, Chunji
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [38] Human umbilical cord mesenchymal stem cells derived extracellular vesicles alleviate salpingitis by promoting M1-to-M2 transformation
    Zhang, Changlin
    Liao, Wei
    Li, Weizhao
    Li, Mengxiong
    Xu, Xiaoyu
    Sun, Haohui
    Xue, Yaohua
    Liu, Lixiang
    Qiu, Jiehong
    Zhang, Chi
    Zhang, Xunzhi
    Ye, Juntong
    Du, Jingran
    Deng, David Y. B.
    Deng, Wuguo
    Li, Tian
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [39] Comprehensive miRNA Analysis of Human Umbilical Cord-Derived Mesenchymal Stromal Cells and Extracellular Vesicles
    Zou, Xiangyu
    Yu, Yongjiang
    Lin, Sihao
    Zhong, Liang
    Sun, Jie
    Zhang, Guangyuan
    Zhu, Yingjian
    KIDNEY & BLOOD PRESSURE RESEARCH, 2018, 43 (01): : 152 - 161
  • [40] Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury
    Zhai, Xiao
    Chen, Kai
    Yang, Huan
    Li, Bo
    Zhou, Tianjunke
    Wang, Haojue
    Zhou, Huipeng
    Chen, Shaofeng
    Zhou, Xiaoyi
    Wei, Xiaozhao
    Bai, Yushu
    Li, Ming
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)