Precisely tuning the Ni3N/Pt interface to boost the catalytic activity of alkaline hydrogen evolution reaction

被引:1
|
作者
Zhou, Min [1 ,2 ]
Mei, Shaowei [1 ]
Li, Chongzhi [1 ]
Liu, Mingyu [1 ]
Yao, Xiaojing [3 ]
Zhang, Xiuyun [1 ]
Lu, Fei [1 ,2 ]
Zeng, Xianghua [1 ]
机构
[1] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Peoples R China
[2] Yangzhou Univ, Microelect Ind Res Inst, Yangzhou 225002, Peoples R China
[3] Hebei normal Univ, Coll Phys, Hebei Adv thin films Lab, Shijiazhuang 050024, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterostructure; Hydrogen production; Interface engineering; Electrocatalyst; ELECTROCATALYSTS; EFFICIENT; HETEROSTRUCTURES; NANOSHEETS; MECHANISM; KINETICS; OER;
D O I
10.1016/j.apsusc.2024.159391
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrogen evolution reaction (HER) in alkaline solutions does not access H* directly, resulting in a slower reaction kinetics compared to that in acidic solutions. Here, we report a Cr-doped Ni3N/Pt heterostructure that provides additional active sites to produce H* via the water -cleaving step, in addition to the intrinsic active Pt site for H* absorption. It is demonstrated that the Cr dopant can modulate the charge redistribution between Ni3N and Pt interface, lowering the energy barrier of both the Volmer step and the following Heyrovsky step. As a result, the prepared Cr-Ni3N/Pt catalyst achieves an extreme low overpotential of 20 mV to deliver a current density of 10 mA/cm2 under alkaline conditions, which is significantly better than the commercial Pt/C catalyst (45 mV). Density Functional Theory (DFT) further reveals that the Cr-modified Ni3N/Pt interface undergoes electronic orbital hybridization, enhancing the water adsorption and dissociation processes on the Ni sites. This work presents the feasibility of the electronic structure modulation in low -platinum catalysts, which provides an effective strategy for the design of electrocatalysts used in multi -step reactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Interstitial Hydrogen Atom to Boost Intrinsic Catalytic Activity of Tungsten Oxide for Hydrogen Evolution Reaction
    Yang, Jun
    Cao, Yifan
    Zhang, Shuyu
    Shi, Qingwen
    Chen, Siyu
    Zhu, Shengcai
    Li, Yunsong
    Huang, Jianfeng
    SMALL, 2023, 19 (29)
  • [42] Constructing interfacial structure of Mo5N6/Ni3N/Ni/NF for efficient and stable electrocatalytic hydrogen evolution under alkaline conditions
    Zhou, Yang
    Zhou, Jing
    Boda, Muzaffar Ahmad
    Zhao, Kunfeng
    Ma, Haojie
    Shi, Chenhao
    Yuan, Dingwang
    Yi, Zhiguo
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (05) : 957 - 963
  • [43] Simple solvothermal synthesis of uniform Pt66Ni34 nanoflowers as advanced electrocatalyst to significantly boost the catalytic activity and durability of hydrogen evolution reaction
    Huang, Xian-Yan
    Zhu, Xiao-Yan
    Zhang, Xiao-Fang
    Zhang, Lu
    Feng, Jiu-Ju
    Wang, Ai-Jun
    ELECTROCHIMICA ACTA, 2018, 271 : 397 - 405
  • [44] Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution
    Gao, Daqiang
    Zhang, Jingyan
    Wang, Tongtong
    Xiao, Wen
    Tao, Kun
    Xue, Desheng
    Ding, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17363 - 17369
  • [45] Hydrogen evolution reaction in alkaline solution - Catalytic influence of Pt supported on graphite vs Pt inclusions in graphite
    Fournier, J
    Brossard, L
    Tilquin, JY
    Cote, R
    Dodelet, JP
    Guay, D
    Menard, H
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : 919 - 926
  • [46] Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution
    Abbas, Syed Asad
    Iqbal, Muhammad Ibrahim
    Kim, Seong-Hoon
    Jung, Kwang-Deog
    ELECTROCHIMICA ACTA, 2017, 227 : 382 - 390
  • [47] Tuning of electrocatalytic activity of WO3-TiO2 nanocomposite electrode for alkaline hydrogen evolution reaction
    Anupama, V. R.
    Mideen, A. Sheik
    Shibli, S. M. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (29) : 15145 - 15160
  • [48] Pt and Pt-Ni(OH)2 Electrodes for the Hydrogen Evolution Reaction in Alkaline Electrolytes and Their Nanoscaled Electrocatalysts
    Ruqia, Bibi
    Choi, Sang-Il
    CHEMSUSCHEM, 2018, 11 (16) : 2643 - 2653
  • [49] Heterointerface-Rich Ni3N/WO3 Hierarchical Nanoarrays for Efficient Glycerol Oxidation-Assisted Alkaline Hydrogen Evolution
    Wang, Hongjing
    Zhan, Wenjie
    Jiang, Shaojian
    Deng, Kai
    Wang, Ziqiang
    Xu, You
    Yu, Hongjie
    Wang, Liang
    CHEMSUSCHEM, 2024, 17 (18)
  • [50] Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction
    Gao, Xiaorui
    Liu, Ximeng
    Zang, Wenjie
    Dong, Huilong
    Pang, Yajun
    Kou, Zongkui
    Wang, Pengyan
    Pan, Zhenghui
    Wei, Sunrui
    Mu, Shichun
    Wang, John
    NANO ENERGY, 2020, 78