Deep learning based multi-view stereo matching and 3D scene reconstruction from oblique aerial images

被引:24
|
作者
Liu, Jin [1 ]
Gao, Jian [1 ]
Ji, Shunping [1 ]
Zeng, Chang [1 ]
Zhang, Shaoyi [1 ]
Gong, Jianya [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
3D scene reconstruction; Multi-view stereo; Oblique aerial images; Deep learning; Dense image matching;
D O I
10.1016/j.isprsjprs.2023.08.015
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this paper, we propose a practical three-dimensional (3D) real-scene reconstruction framework named Deep3D, which is paired with a deep learning based multi-view stereo (MVS) matching model named the adaptive multi-view aggregation matching (Ada-MVS) model, to obtain a 3D textured mesh model from multi view oblique aerial images. Deep3D is the first deep learning based framework for 3D scene reconstruction, in which aerial triangulation and view selection are first performed on the input images, and the depth map of each image is then inferred using the pretrained Ada-MVS model. All the inferred depth maps are then fused into a dense point cloud after filtering the outliers. Finally, the 3D textured mesh is extracted from the dense 3D points as the final product. In the Ada-MVS model, a novel adaptive inter-view aggregation module is specially proposed to address the inconsistent information among oblique views and to fuse the multi-view costs into a robust cost volume. A lightweight recurrent regularization module is also designed for high-efficiency processing of high-capacity aerial images with large depth variations. Moreover, as oblique aerial image datasets are currently lacking, we built a large-scale synthetic multi-view oblique aerial image dataset (WHU-OMVS dataset) for deep learning based model training and methodology evaluation for the task of 3D scene reconstruction. The experimental results show that, firstly, the proposed Ada-MVS model has obvious advantages when used with high capacity oblique aerial images, compared with several relevant learning-based MVS methods. Secondly, through a comprehensive comparison with popular commercial software packages and open-source solutions, it is shown that the proposed Deep3D framework outperforms all the other solutions in terms of reconstruction quality, and outperforms all the open-source solutions and some of the software packages in terms of efficiency on the WHU-OMVS dataset. Thirdly, the Deep3D framework shows a stable generalization ability and excellent performance when applied to other oblique or nadir aerial images, without any further fine-tuning. The dataset and code will be available at http://gpcv.whu.edu.cn/data.
引用
收藏
页码:42 / 60
页数:19
相关论文
共 50 条
  • [41] Plan3D: Viewpoint and Trajectory Optimization for Aerial Multi-View Stereo Reconstruction
    Hepp, Benjamin
    Niessner, Matthias
    Hilliges, Otmar
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (01):
  • [42] INVESTIGATING SPHERICAL EPIPOLAR RECTIFICATION FOR MULTI-VIEW STEREO 3D RECONSTRUCTION
    Elhashash, M.
    Qin, R.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 5-2 : 47 - 52
  • [43] User-guided 3D reconstruction using multi-view stereo
    Rasmuson, Sverker
    Sintorn, Erik
    Assarsson, Ulf
    I3D 2020: ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, 2020,
  • [44] Accurate stereo 3D point cloud generation suitable for multi-view stereo reconstruction
    Kordelas, Georgios A.
    Daras, Petros
    Klavdianos, Patrycia
    Izquierdo, Ebroul
    Zhang, Qianni
    2014 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING CONFERENCE, 2014, : 307 - 310
  • [45] A real sense 3D face reconstruction system based on multi-view stereo vision
    Li, Ke
    Zeng, Dong
    Zhang, Jun
    Lin, Rui
    Gao, Luobin
    Liao, Xiaoli
    Journal of Information and Computational Science, 2015, 12 (10): : 3739 - 3753
  • [46] AN AUTOMATIC 3D RECONSTRUCTION METHOD BASED ON MULTI-VIEW STEREO VISION FOR THE MOGAO GROTTOES
    Xiong, Jie
    Zhong, Sidong
    Zheng, Lin
    INDOOR-OUTDOOR SEAMLESS MODELLING, MAPPING AND NAVIGATION, 2015, 44 (W5): : 171 - 176
  • [47] Multi-view depth map sampling for 3D reconstruction of natural scene
    Jiang, Hangqing
    Zhao, Changfei
    Zhang, Guofeng
    Wang, Huiyan
    Bao, Hujun
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (10): : 1805 - 1815
  • [48] A 3D Reconstruction Method Based on Images Dense Stereo Matching
    Jiang Ze-tao
    Zheng Bi-na
    Wu Min
    Chen Zhong-xiang
    THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 319 - 323
  • [49] PDE-Based 3D Surface Reconstruction from Multi-View 2D Images
    Zhu, Zaiping
    Iglesias, Andres
    Zhou, Liqi
    You, Lihua
    Zhang, Jianjun
    MATHEMATICS, 2022, 10 (04)
  • [50] Research on automatic 3D reconstruction of plant phenotype based on Multi-View images
    Yang, Danni
    Yang, Huijun
    Liu, Dongfeng
    Wang, Xianlin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 220