An in situ fabricated multifunctional gel electrolyte for lithium-sulfur batteries

被引:5
|
作者
Wang, Hui-Min [1 ]
Fu, En-De [1 ]
Li, Guo-Ran [1 ]
Liu, Sheng [1 ]
Gao, Xue-Ping [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -sulfur batteries; Gel electrolytes; In -situ polymerization; Inorganic skeleton; Interface stability; POLYMER ELECTROLYTE; SEPARATOR; PERFORMANCE; NANOFIBERS; ANODE;
D O I
10.1016/j.jpowsour.2023.233461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the high-energy lithium-sulfur (Li-S) batteries being a promising secondary batteries system, their commercialization is seriously hindered by the polysulfides shuttle, unstable lithium anode and safety hazards in the traditional liquid electrolytes. Herein, a multifunctional gel polymer electrolyte (ANPD-GPE) is fabricated, which is composed of Nafion-coated Al2O3 nanofibers and in-situ polymerized 1,3-dioxolane (DOL). Lewis-acidic Al2O3 has a strong effect on the Lewis base of bis(trifluoromethanesulphony)imide anions, facilitating the transport of Li+ and resulting in a reduced Li+ concentration gradient. In addition, the replacement of a flammable polyolefin separator by the inorganic Al2O3 robust nanofibers skeleton can effectively promote the structural and thermal stability of electrolytes. The introduction of Nafion effectively inhibits the shuttle effect vis polymerization of DOL and the electrostatic repulsion of its anions. The in-situ polymerized elastic poly-DOL (PDOL) can stabilize the lithium anode because of its accommodation for the fluctuating interface during cycling. Consequently, Li-S cells with ANPD-GPE present improved electrochemical performance in terms of cathode cyclability and lithium anode stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High capacity and cycle stability Rechargeable Lithium-Sulfur batteries by sandwiched gel polymer electrolyte
    Yang, Wu
    Yang, Wang
    Feng, Jiani
    Ma, Zhipeng
    Shao, Guangjie
    ELECTROCHIMICA ACTA, 2016, 210 : 71 - 78
  • [32] Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes
    Pang, Quan
    Liang, Xiao
    Kwok, Chun Yuen
    Nazar, Linda F.
    NATURE ENERGY, 2016, 1
  • [33] Organic Thiolate as Multifunctional Salt for Rechargeable Lithium-Sulfur Batteries
    Sang, Pengfei
    Tang, Shuai
    Li, Fengli
    Si, Yubing
    Fu, Yongzhu
    SMALL, 2024, 20 (48)
  • [34] Conductive FeOOH as Multifunctional Interlayer for Superior Lithium-Sulfur Batteries
    Wei, Benben
    Shang, Chaoqun
    Wang, Xin
    Zhou, Guofu
    SMALL, 2020, 16 (34)
  • [35] In situ wrapping of the cathode material in lithium-sulfur batteries
    Hu, Chenji
    Chen, Hongwei
    Shen, Yanbin
    Lu, Di
    Zhao, Yanfei
    Lu, An-Hui
    Wu, Xiaodong
    Lu, Wei
    Chen, Liwei
    NATURE COMMUNICATIONS, 2017, 8
  • [36] Research Progress on Multifunctional Modified Separator for Lithium-Sulfur Batteries
    Wang, Ying
    Ai, Rui
    Wang, Fei
    Hu, Xiuqiong
    Zeng, Yuejing
    Hou, Jiyue
    Zhao, Jinbao
    Zhang, Yingjie
    Zhang, Yiyong
    Li, Xue
    POLYMERS, 2023, 15 (04)
  • [37] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [38] In situ wrapping of the cathode material in lithium-sulfur batteries
    Chenji Hu
    Hongwei Chen
    Yanbin Shen
    Di Lu
    Yanfei Zhao
    An-Hui Lu
    Xiaodong Wu
    Wei Lu
    Liwei Chen
    Nature Communications, 8
  • [39] In Situ/Operando Raman Techniques in Lithium-Sulfur Batteries
    Xue, Lanxin
    Li, Yaoyao
    Hu, Anjun
    Zhou, Mingjie
    Chen, Wei
    Lei, Tianyu
    Yan, Yichao
    Huang, Jianwen
    Yang, Chengtao
    Wang, Xianfu
    Hu, Yin
    Xiong, Jie
    SMALL STRUCTURES, 2022, 3 (03):
  • [40] Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes
    Pang Q.
    Liang X.
    Kwok C.Y.
    Nazar L.F.
    Nature Energy, 1 (9)