Lightcurve analysis of asteroid 15691 Maslov using NAO Rozhen observations and sparse data

被引:0
|
作者
Bebekovska, E. Vchkova [1 ]
Apostolovska, G. [1 ]
Boeva, S. [2 ,3 ]
Petrov, B. [2 ,3 ]
Borisov, G. [2 ,3 ]
Kostov, A. [2 ,3 ]
机构
[1] Ss Cyril & Methodius Univ, Fac Sci, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[2] Bulgarian Acad Sci, Inst Astron, Tsarigradsko Chaussee Blvd 72, BG-1784 Sofia, Bulgaria
[3] Bulgarian Acad Sci, Natl Astron Observ, Tsarigradsko Chaussee Blvd 72, BG-1784 Sofia, Bulgaria
来源
关键词
Minor planets; asteroids; photometric-Asteroids; individual; 15691; Maslov;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Photometric observations of the asteroid 15691 Maslov, were performed with 2 m and 50/70 cm Schmidt telescopes at NAO Rozhen during the asteroid's opposition in 2015 and 2022. Calculated colour indices suggest that 15691 Maslov belongs to the S spectral type. The composite lightcurve shows synodic rotation period of 7.8 +/- 0.2h hours and amplitude of about 0.2 magnitudes. For calculation of the sidereal period with the lightcurve inversion technique we used our dense photometric data in combination with the sparse data from the AstDys21 database.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Near Earth Asteroid Scout CubeSat Science Data Retrieval Optimization Using Onboard Data Analysis
    Lightholder, Jack
    Thompson, David R.
    Castillo-Rogez, Julie
    Basset, Christophe
    2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [12] Structured sparse graphs using manifold constraints for visual data analysis
    Dornaika, F.
    Weng, L.
    Jin, Z.
    NEUROCOMPUTING, 2018, 315 : 107 - 114
  • [13] Interference Mitigation using Data-driven Sparse Component Analysis
    Deng, Wen
    Wang, Xiang
    Huang, Zhitao
    Xu, Qiang
    4TH ASIA CONFERENCE ON COMPUTERS AND COMMUNICATIONS, ACCC 2023, 2024, 2722
  • [14] A Data-Driven Sparse GLM for fMRI Analysis Using Sparse Dictionary Learning With MDL Criterion
    Lee, Kangjoo
    Tak, Sungho
    Ye, Jong Chul
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) : 1076 - 1089
  • [15] Microarray Data Analysis of Yeast Data using Sparse Non-Negative Matrix Factorization
    Passi, Kalpdrum
    Draper, Paul
    Santala, Jillana
    Jain, Chakresh Kumar
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 1259 - 1264
  • [16] Regression analysis of censored data using pseudo-observations
    Parner, Erik T.
    Andersen, Per K.
    STATA JOURNAL, 2010, 10 (03): : 408 - 422
  • [17] Sparse topical analysis of dyadic data using matrix tri-factorization
    Swamy, Ranganath Biligere Narayana
    MACHINE LEARNING, 2016, 104 (2-3) : 441 - 466
  • [18] Comparisons of Integrative Methods for Genomic Data using Sparse Canonical Correlation Analysis
    Chalise, Prabhakar
    Fridley, Brooke L.
    Wang, Leiwei
    GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 938 - 938
  • [19] Georeferenced Spectrum Occupancy Analysis Using Spatially Very Sparse Monitoring Data
    Tadik, Serhat
    Patwari, Neal
    Webb, Kirk
    Lin, Xuan
    Durgin, Gregory D.
    2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024, 2024, : 311 - 316
  • [20] Sparse topical analysis of dyadic data using matrix tri-factorization
    Ranganath Biligere Narayana Swamy
    Machine Learning, 2016, 104 : 441 - 466