Deep learning for brain age estimation: A systematic review

被引:49
|
作者
Tanveer, M. [1 ]
Ganaie, M. A. [2 ]
Beheshti, Iman [3 ]
Goel, Tripti [4 ]
Ahmad, Nehal [1 ,5 ]
Lai, Kuan-Ting [6 ]
Huang, Kaizhu [7 ]
Zhang, Yu-Dong [8 ]
Del Ser, Javier [9 ,10 ]
Lin, Chin-Teng [11 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore 453552, India
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
[3] Univ Manitoba, Max Rady Coll Med, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Winnipeg, MB, Canada
[4] Natl Inst Technol Silchar, Biomed Imaging Lab, Silchar 788010, Assam, India
[5] Natl Taipei Univ Technol, Dept Elect Engn & Comp Sci, Taipei, Taiwan
[6] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
[7] Duke Kunshan Univ, Data Sci Res Ctr, Suzhou, Peoples R China
[8] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
[9] Basque Res & Technol Alliance BRTA, TECNALIA, Derio 48160, Spain
[10] Univ Basque Country UPV EHU, Bilbao 48013, Spain
[11] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Comp Sci, Sydney, Australia
关键词
Brain age estimation; Neuroimaging; Machine learning; Deep learning; Deep neural networks; REGRESSION; MACHINE; EXERCISE; NETWORK;
D O I
10.1016/j.inffus.2023.03.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated with the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required to elicit accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning ) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 50 条
  • [21] Deep Learning for Age Estimation Using EfficientNet
    Aruleba, Idowu
    Viriri, Serestina
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 407 - 419
  • [22] Deep Learning with PCANet for Human Age Estimation
    Zheng, DePeng
    Du, JiXiang
    Fan, WenTao
    Wang, Jing
    Zhai, ChuanMin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 300 - 310
  • [23] Deep Learning and Neurology: A Systematic Review
    Valliani, Aly Al-Amyn
    Ranti, Daniel
    Oermann, Eric Karl
    NEUROLOGY AND THERAPY, 2019, 8 (02) : 351 - 365
  • [24] Deep Learning for Diabetes: A Systematic Review
    Zhu, Taiyu
    Li, Kezhi
    Herrero, Pau
    Georgiou, Pantelis
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2744 - 2757
  • [25] Deep Learning and Neurology: A Systematic Review
    Aly Al-Amyn Valliani
    Daniel Ranti
    Eric Karl Oermann
    Neurology and Therapy, 2019, 8 : 351 - 365
  • [26] Age Estimation from Brain Magnetic Resonance Images Using Deep Learning Techniques in Extensive Age Range
    Usui, Kousuke
    Yoshimura, Takaaki
    Tang, Minghui
    Sugimori, Hiroyuki
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [27] Neuroimaging and machine learning for brain age estimation
    Kocar, Thomas D.
    Denkinger, Michael
    Kassubek, Jan
    AGING-US, 2023, 15 (08): : 2822 - 2823
  • [28] Deep learning techniques for isointense infant brain tissue segmentation: a systematic literature review
    Mhlanga, Sandile Thamie
    Viriri, Serestina
    FRONTIERS IN MEDICINE, 2023, 10
  • [29] Deep Learning for Detecting Brain Metastases on MRI: A Systematic Review and Meta-Analysis
    Ozkara, Burak B. B.
    Chen, Melissa M. M.
    Federau, Christian
    Karabacak, Mert
    Briere, Tina M. M.
    Li, Jing
    Wintermark, Max
    CANCERS, 2023, 15 (02)
  • [30] Brain Age Estimation based on Brain MRI by an Ensemble of Deep Networks
    Jahanshiri, Zahra
    Abadeh, Mohammad Saniee
    Sajedi, Hedieh
    PROCEEDINGS OF THE 2021 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2021), 2021,