An Improved Artificial Bee Colony Optimization Algorithm for Test Suite Minimization

被引:0
|
作者
Ahuja, Neeru [1 ]
Bhatia, Pradeep Kumar [1 ]
机构
[1] Guru Jambheshwar Univ Sci & Technol, Dept Comp Sci & Engn, Hisar 125001, Haryana, India
关键词
Test suite; test suite minimization; TLBO; ABC; nature inspired algorithm;
D O I
10.14569/IJACSA.2023.0140774
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
testing is essential process for maintaining the quality of software. Due to changes in customer demands or industry, software needs to be updated regularly. Therefore software becomes more complex and test suite size also increases exponentially. As a result, testing incurs a large overhead in terms of time, resources, and costs associated with testing. Additionally, handling and operating huge test suites can be cumbersome and inefficient, often resulting in duplication of effort and redundant test coverage. Test suite minimization strategy can help in resolving this issue. Test suite reduction is an efficient method for increasing the overall efficacy of a test suite and removing obsolete test cases. The paper demonstrates an improved artificial bee colony optimization algorithm for test suite minimization. The exploitation behavior of algorithm is improved by amalgamating the teaching learning based optimization technique. Second, the learner performance factor is used to explore the more solutions. The aim of the algorithm is to remove the redundant test cases, while still ensuring effectiveness of fault detection capability. The algorithm compared against three established methods (GA, ABC, and TLBO) using a benchmark dataset. The experiment results show that proposed algorithm reduction rate more than 50% with negligible loss in fault detection capability. The results obtained through empirical analysis show that the suggested algorithm has surpassed the other algorithms in performance.
引用
收藏
页码:675 / 684
页数:10
相关论文
共 50 条
  • [31] Improved Artificial Bee Colony Algorithm with Chaos
    Wu, Bin
    Fan, Shu-hai
    COMPUTER SCIENCE FOR ENVIRONMENTAL ENGINEERING AND ECOINFORMATICS, PT 1, 2011, 158 : 51 - 56
  • [32] An Improved Adaptive Artificial Bee Colony Algorithm
    Chen, Peng
    Li, Qing
    Xu, Cong
    Zhao, Yue-fei
    Dong, En-ji
    Cui, Jia-rui
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1444 - 1449
  • [34] A Research of Improved Artificial Bee Colony Algorithm
    Zhang, Bo-ping
    Li, Guoqing
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, PTS 1-4, 2013, 303-306 : 1373 - 1378
  • [35] An Improved Method of Artificial Bee Colony Algorithm
    Wu, Xin-jie
    Hao, Duo
    Xu, Chao
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION II, PTS 1 AND 2, 2012, 102-102 : 315 - 319
  • [36] An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering
    Nouria Rahnema
    Farhad Soleimanian Gharehchopogh
    Multimedia Tools and Applications, 2020, 79 : 32169 - 32194
  • [37] An improved artificial bee colony algorithm based on whale optimization algorithm for data clustering
    Rahnema, Nouria
    Gharehchopogh, Farhad Soleimanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (43-44) : 32169 - 32194
  • [38] Hybrid Artificial Bee Colony Algorithm for t-Way Interaction Test Suite Generation
    Alazzawi, Ammar K.
    Rais, Helmi Md
    Basri, Shuib
    SOFTWARE ENGINEERING METHODS IN INTELLIGENT ALGORITHMS, VOL 1, 2019, 984 : 192 - 199
  • [39] ARTIFICIAL BEE COLONY ALGORITHM FOR DISCRETE OPTIMIZATION
    Shao, Y. C.
    Zhu, J. N.
    Xu, Z. Y.
    Jia, H. B.
    Tian, L. W.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 122 : 14 - 15
  • [40] Artificial Bee Colony Algorithm for Portfolio Optimization
    Ge, Mengyao
    FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2014, : 449 - 453