Rapid Preparation of Superabsorbent Self-Healing Hydrogels by Frontal Polymerization

被引:7
|
作者
Qin, Ying [1 ]
Li, Hao [1 ]
Shen, Hai-Xia [1 ]
Wang, Cai-Feng [1 ]
Chen, Su [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, 5 Xin Mofan Rd, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
frontal polymerization; hydrogels; porous morphology; swelling behavior; self-healing; INJECTABLE HYDROGELS; RELEASE;
D O I
10.3390/gels9050380
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal polymerization (FP). Self-sustained copolymerization of acrylamide (AM), 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SBMA), and acrylic acid (AA) within 10 min via FP yielded highly transparent and stretchable poly(AM-co-SBMA-co-AA) hydrogels. Thermogravimetric analysis and Fourier transform infrared spectroscopy confirmed the successful fabrication of poly(AM-co-SBMA-co-AA) hydrogels with a single copolymer composition without branched polymers. The effect of monomer ratio on FP features as well as porous morphology, swelling behavior, and self-healing performance of the hydrogels were systematically investigated, showing that the properties of the hydrogels could be tuned by adjusting the chemical composition. The resulting hydrogels were superabsorbent and sensitive to pH, exhibiting a high swelling ratio of up to 11,802% in water and 13,588% in an alkaline environment. The rheological data revealed a stable gel network. These hydrogels also had a favorable self-healing ability with a healing efficiency of up to 95%. This work contributes a simple and efficient method for the rapid preparation of superabsorbent and self-healing hydrogels.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Designing self-healing hydrogels for biomedical applications
    Ding, Xiaoya
    Fan, Lu
    Wang, Li
    Zhou, Min
    Wang, Yongxiang
    Zhao, Yuanjin
    MATERIALS HORIZONS, 2023, 10 (10) : 3929 - 3947
  • [42] Research Progress of Cellulose Self-Healing Hydrogels
    Zhang Y.
    Shi J.
    Fu Z.
    Lu Y.
    Linye Kexue/Scientia Silvae Sinicae, 2024, 60 (02): : 128 - 138
  • [43] Characterization of self-healing hydrogels for biomedical applications
    Karvinen, Jennika
    Kellomaki, Minna
    EUROPEAN POLYMER JOURNAL, 2022, 181
  • [44] Advances in Synthesis and Applications of Self-Healing Hydrogels
    Fan, Leqi
    Ge, Xuemei
    Qian, Yebin
    Wei, Minyan
    Zhang, Zirui
    Yuan, Wei-En
    Ouyang, Yuanming
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [45] Self-Healing Behaviors of Tough Polyampholyte Hydrogels
    Bin Ihsan, Abu
    Sun, Tao Lin
    Kurokawa, Takayuki
    Karobi, Sadia Nazneen
    Nakajima, Tasuku
    Nonoyama, Takayuki
    Roy, Chanchal Kumar
    Luo, Feng
    Gong, Jian Ping
    MACROMOLECULES, 2016, 49 (11) : 4245 - 4252
  • [46] Mussel-Inspired Self-Healing Hydrogels
    Holten-Andersen, Niels
    Lee, Bruce P.
    Messersmith, Phillip B.
    Waite, J. H.
    Lee, Ka Yee C.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 604A - 604A
  • [47] Rapid Self-healing Film From Novel Photo Polymerization Additive.
    Oh, Jeong Seop
    Choi, Kyoung Hwan
    Suh, Dong Hack
    CHEMISTRYSELECT, 2018, 3 (45): : 12836 - 12840
  • [48] Advances in injectable self-healing biomedical hydrogels
    Tu, Yujie
    Chen, Nuan
    Li, Chuping
    Liu, Haiqian
    Zhu, Rong
    Chen, Shengfeng
    Xiao, Qiao
    Liu, Jianghui
    Ramakrishna, Seeram
    He, Liumin
    ACTA BIOMATERIALIA, 2019, 90 : 1 - 20
  • [49] Conductive nanocomposite hydrogels with self-healing property
    Peng, Rengui
    Yu, Yang
    Chen, Sheng
    Yang, Yingkui
    Tang, Youhong
    RSC ADVANCES, 2014, 4 (66): : 35149 - 35155
  • [50] Advances in biomedical applications of self-healing hydrogels
    Rammal, Hassan
    GhavamiNejad, Amin
    Erdem, Ahmet
    Mbeleck, Rene
    Nematollahi, Mohammad
    Emir Diltemiz, Sibel
    Alem, Halima
    Darabi, Mohammad Ali
    Ertas, Yavuz Nuri
    Caterson, Edward J.
    Ashammakhi, Nureddin
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (12) : 4368 - 4400