Data-driven discovery of invariant measures

被引:0
|
作者
Bramburger, Jason J. [1 ]
Fantuzzi, Giovanni [2 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Erlangen, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
invariant measure; ergodic theory; semidefinite program; Koopman operator; Perron-Frobenius operator; Poincare map; periodic orbit; DYNAMIC-MODE DECOMPOSITION; APPROXIMATION; OPTIMIZATION; CONVERGENCE; OPERATOR; SQUARES; ENERGY; BOUNDS;
D O I
10.1098/rspa.2023.0627
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Invariant measures encode the long-time behaviour of a dynamical system. In this work, we propose an optimization-based method to discover invariant measures directly from data gathered from a system. Our method does not require an explicit model for the dynamics and allows one to target specific invariant measures, such as physical and ergodic measures. Moreover, it applies to both deterministic and stochastic dynamics in either continuous or discrete time. We provide convergence results and illustrate the performance of our method on data from the logistic map and a stochastic double-well system, for which invariant measures can be found by other means. We then use our method to approximate the physical measure of the chaotic attractor of the Rossler system, and we extract unstable periodic orbits embedded in this attractor by identifying discrete-time periodic points of a suitably defined Poincare map. This final example is truly data-driven and shows that our method can significantly outperform previous approaches based on model identification.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Data-Driven Domain Discovery for Structured Datasets
    Ota, Masayo
    Mueller, Heiko
    Freire, Juliana
    Srivastava, Divesh
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (07): : 953 - 965
  • [32] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    MRS Bulletin, 2019, 44 : 559 - 564
  • [33] Data-driven discovery of PDEs in complex datasets
    Berg, Jens
    Nystrom, Kaj
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 239 - 252
  • [34] Opportunities and Challenges of Data-Driven Virus Discovery
    Lauber, Chris
    Seitz, Stefan
    BIOMOLECULES, 2022, 12 (08)
  • [35] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (=256601)
  • [36] Data-driven drug discovery and healthcare by AI
    Yamanishi, Yoshihiro
    CANCER SCIENCE, 2023, 114 : 7 - 7
  • [37] Biomedical evidence engineering for data-driven discovery
    Zhao, Sendong
    Wang, Aobo
    Qin, Bing
    Wang, Fei
    BIOINFORMATICS, 2022, 38 (23) : 5270 - 5278
  • [38] Paleontology Knowledge Graph for Data-Driven Discovery
    Deng, Yiying
    Song, Sicun
    Fan, Junxuan
    Luo, Mao
    Yao, Le
    Dong, Shaochun
    Shi, Yukun
    Zhang, Linna
    Wang, Yue
    Xu, Haipeng
    Xu, Huiqing
    Zhao, Yingying
    Pan, Zhaohui
    Hou, Zhangshuai
    Li, Xiaoming
    Shen, Boheng
    Chen, Xinran
    Zhang, Shuhan
    Wu, Xuejin
    Xing, Lida
    Liang, Qingqing
    Wang, Enze
    JOURNAL OF EARTH SCIENCE, 2024, 35 (03) : 1024 - 1034
  • [39] Data-driven Evaluation of Visual Quality Measures
    Sedlmair, M.
    Aupetit, M.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 201 - 210
  • [40] Data-Driven Synthesis of Robust Invariant Sets and Controllers
    Mulagaleti, Sampath Kumar
    Bemporad, Alberto
    Zanon, Mario
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1676 - 1681