Automatic Identification and Segmentation of Orbital Blowout Fractures Based on Artificial Intelligence

被引:6
|
作者
Bao, Xiao-li [1 ]
Zhan, Xi [2 ]
Wang, Lei [3 ]
Zhu, Qi [1 ]
Fan, Bin [1 ,4 ]
Li, Guang-Yu [1 ,4 ]
机构
[1] Jilin Univ, Norman Bethune Hosp 2, Dept Ophthalmol, Changchun, Peoples R China
[2] Army Engn Univ PLA, Nanjing, Peoples R China
[3] Wenzhou Med Univ, Wenzhou, Peoples R China
[4] Jilin Univ, Norman Bethune Hosp 2, Dept Ophthalmol, Changchun 130041, Peoples R China
来源
关键词
artificial intelligence (AI); deep learning; UNet; denseNet-169; orbital blowout fractures; RECONSTRUCTION;
D O I
10.1167/tvst.12.4.7
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The incidence of orbital blowout fractures (OBFs) is gradually increasing due to traffic accidents, sports injuries, and ocular trauma. Orbital computed tomography (CT) is crucial for accurate clinical diagnosis. In this study, we built an artificial intelligence (AI) system based on two available deep learning networks (DenseNet-169 and UNet) for fracture identification, fracture side distinguishment, and fracture area segmentation.Methods: We established a database of orbital CT images and manually annotated the fracture areas. DenseNet-169 was trained and evaluated on the identification of CT images with OBFs. We also trained and evaluated DenseNet-169 and UNet for fracture side distinguishment and fracture area segmentation. We used cross-validation to evalu-ate the performance of the AI algorithm after training.Results: For fracture identification, DenseNet-169 achieved an area under the receiver operating characteristic curve (AUC) of 0.9920 & PLUSMN; 0.0021, with an accuracy, sensitivity, and specificity of 0.9693 & PLUSMN; 0.0028, 0.9717 & PLUSMN; 0.0143, and 0.9596 & PLUSMN; 0.0330, respectively. DenseNet-169 realized the distinguishment of the fracture side with accuracy, sensitiv -ity, specificity, and AUC of 0.9859 & PLUSMN; 0.0059, 0.9743 & PLUSMN; 0.0101, 0.9980 & PLUSMN; 0.0041, and 0.9923 & PLUSMN; 0.0008, respectively. The intersection over union (IoU) and Dice coefficient of UNet for fracture area segmentation were 0.8180 & PLUSMN; 0.0093 and 0.8849 & PLUSMN; 0.0090, respectively, showing a high agreement with manual segmentation.Conclusions: The trained AI system could realize the automatic identification and segmentation of OBFs, which might be a new tool for smart diagnoses and improved efficiencies of three-dimensional (3D) printing-assisted surgical repair of OBFs.Translational Relevance: Our AI system, based on two available deep learning network models, could help in precise diagnoses and accurate surgical repairs.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Medial Buttressing in Orbital Blowout Fractures
    Ramesh, Sathyadeepak
    Bokman, Christine
    Mustak, Hamzah
    Lo, Christopher
    Goldberg, Robert
    Rootman, Daniel
    OPHTHALMIC PLASTIC AND RECONSTRUCTIVE SURGERY, 2018, 34 (05): : 456 - 459
  • [12] BLINDNESS FOLLOWING BLOWOUT ORBITAL FRACTURES
    CULLEN, GCR
    LUCE, CM
    SHANNON, GM
    OPHTHALMIC SURGERY AND LASERS, 1977, 8 (01): : 60 - 62
  • [13] Displacements of eyeball in orbital blowout fractures
    Yab, K
    Tajima, S
    Ohba, S
    PLASTIC AND RECONSTRUCTIVE SURGERY, 1997, 100 (06) : 1409 - 1417
  • [14] An investigation into the mechanism of orbital blowout fractures
    Waterhouse, N
    Lyne, J
    Urdang, M
    Garey, L
    BRITISH JOURNAL OF PLASTIC SURGERY, 1999, 52 (08): : 607 - 612
  • [15] Contemporary management of orbital blowout fractures
    Homer, Natalie
    Huggins, Alison
    Durairaj, Vikram D.
    CURRENT OPINION IN OTOLARYNGOLOGY & HEAD AND NECK SURGERY, 2019, 27 (04): : 310 - 316
  • [16] Prevalence and severity of orbital blowout fractures
    Khojastepour, L.
    Moannaei, M.
    Eftekharian, H. R.
    Khaghaninejad, M. S.
    Mahjoori-Ghasrodashti, M.
    Tavanafar, S.
    BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2020, 58 (09): : E93 - E97
  • [17] Dutch Orbital Society - Guideline for orbital blowout fractures
    Hotte, G. J.
    Saeed, P.
    Van den Bosch, W. A.
    Mourits, M. P.
    Coumou, A. D.
    Kloos, R. J. H. M.
    De Keizer, R. O. B.
    Hartong, D. T.
    Eenhorst, C.
    Genders, S. W.
    Paridaens, D.
    Kalmann, R.
    ACTA OPHTHALMOLOGICA, 2021, 99 : 25 - 25
  • [18] Dutch Orbital Society - Guideline for orbital blowout fractures
    Hotte, G. J.
    Saeed, P.
    Van den Bosch, W. A.
    Mourits, M. P.
    Coumou, A. D.
    Kloos, R. J. H. M.
    De Keizer, R. O. B.
    Hartong, D. T.
    Eenhorst, C.
    Genders, S. W.
    Paridaens, D.
    Kalmann, R.
    ACTA OPHTHALMOLOGICA, 2020, 98 : 10 - 10
  • [19] ARTIFICIAL INTELLIGENCE AND AUTOMATIC BUILDING IDENTIFICATION
    Triglav, Joc
    GEODETSKI VESTNIK, 2018, 62 (02) : 314 - 319
  • [20] AUTOMATIC DETECTION OF GASTRIC CANCER USING SEMANTIC SEGMENTATION BASED ON ARTIFICIAL INTELLIGENCE
    Shibata, Tomoyuki
    Enomoto, Kazuma
    Teramoto, Atsushi
    Yamada, Hyuga
    Ohmiya, Naoki
    Fujita, Hiroshi
    GASTROINTESTINAL ENDOSCOPY, 2019, 89 (06) : AB632 - AB632