TIME-PERIODIC SOLUTION TO A THREE-PHASE MODEL OF VISCOELASTIC FLUID FLOW

被引:2
|
作者
DU, Chengxin [1 ]
Liu, Changchun [1 ]
Mei, Ming [2 ,3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, Quebec City, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Three-phase model of visco-elastic fluid flow; time periodic solution; mild solution; integral equation; WELL-POSEDNESS; STOKES SYSTEM; CHEMOTAXIS; EQUATION;
D O I
10.3934/dcds.2022149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a three-phase model of viscoelastic fluid flow in RN for N >= 5. We first prove the existence of the time-periodic solution to the integral system in the space of BC(R; LN,infinity(S2)). Then we further show the existence, uniqueness and regularity of the mild solution of the problem. Finally we confirm that such a mild solution is a strong solution in the space of BC(R; LN,infinity(S2)). The proof is based on the compactness analysis with some new development, where a new estimate scheme is artfully constructed.
引用
收藏
页码:276 / 308
页数:33
相关论文
共 50 条
  • [21] Phase of linear time-periodic systems
    Chen, Wei
    AUTOMATICA, 2023, 151
  • [22] Time-periodic electrokinetic analysis of a micropolar fluid flow through hydrophobic microannulus
    Faltas, M. S.
    El-Sapa, Shreen
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):
  • [23] Three-Phase Backward/Forward Power Flow Solution Considering Three-Phase Distribution Transformers
    Mashhour, Elahe
    Moghaddas-Tafreshi, S. M.
    2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-3, 2009, : 715 - 719
  • [24] Time-periodic Poiseuille-type solution with minimally regular flow rate
    Kaulakyte, Kristina
    Kozulinas, Nikolajus
    Pileckas, Konstantin
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (05): : 947 - 968
  • [25] A fundamental solution to the time-periodic Stokes equations
    Kyed, Mads
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) : 708 - 719
  • [26] The Riemann solution for three-phase flow in a porous medium
    Azevedo, Arthur V.
    de Souza, Aparecido J.
    Furtado, Frederico
    Marchesin, Dan
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS AND APPLICATIONS, PART 2, 2009, 67 : 379 - +
  • [27] Existence and stability of time-periodic solutions in a model for spherical flames with time-periodic heat losses
    Roquejoffre, JM
    Rouzaud, H
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 376 - 392
  • [28] A fluid dynamic model for three-phase airlift reactors
    García-Calvo, E
    Rodríguez, A
    Prados, A
    Klein, J
    CHEMICAL ENGINEERING SCIENCE, 1999, 54 (13-14) : 2359 - 2370
  • [29] Decoupled Energy Stable Schemes for a Phase Field Model of Three-Phase Incompressible Viscous Fluid Flow
    Zhao, Jia
    Li, Huiyuan
    Wang, Qi
    Yang, Xiaofeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (03) : 1367 - 1389
  • [30] Decoupled Energy Stable Schemes for a Phase Field Model of Three-Phase Incompressible Viscous Fluid Flow
    Jia Zhao
    Huiyuan Li
    Qi Wang
    Xiaofeng Yang
    Journal of Scientific Computing, 2017, 70 : 1367 - 1389