Genome-Wide Identification and Characterization of Copper Chaperone for Superoxide Dismutase (CCS) Gene Family in Response to Abiotic Stress in Soybean

被引:5
|
作者
Jiao, Shuang [1 ]
Feng, Rui [1 ]
He, Yu [1 ]
Cao, Fengming [1 ]
Zhao, Yue [1 ]
Zhou, Jingwen [1 ]
Zhai, Hong [2 ]
Bai, Xi [1 ]
机构
[1] Northeast Agr Univ, Coll Life Sci, Harbin 150030, Peoples R China
[2] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Soybean Mol Design Breeding, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
Glycine max; GmCCSs; ROS; abiotic stress;
D O I
10.3390/ijms24065154
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Copper Chaperone For Superoxide Dismutase (CCS) genes encode copper chaperone for Superoxide dismutase (SOD) and dramatically affect the activity of SOD through regulating copper delivery from target to SOD. SOD is the effective component of the antioxidant defense system in plant cells to reduce oxidative damage by eliminating Reactive oxygen species (ROS), which are produced during abiotic stress. CCS might play an important role in abiotic stress to eliminate the damage caused by ROS, however, little is known about CCS in soybean in abiotic stress regulation. In this study, 31 GmCCS gene family members were identified from soybean genome. These genes were classified into 4 subfamilies in the phylogenetic tree. Characteristics of 31 GmCCS genes including gene structure, chromosomal location, collinearity, conserved domain, protein motif, cis-elements, and tissue expression profiling were systematically analyzed. RT-qPCR was used to analyze the expression of 31 GmCCS under abiotic stress, and the results showed that 5 GmCCS genes(GmCCS5, GmCCS7, GmCCS8, GmCCS11 and GmCCS24) were significantly induced by some kind of abiotic stress. The functions of these GmCCS genes in abiotic stress were tested using yeast expression system and soybean hairy roots. The results showed that GmCCS7/GmCCS24 participated in drought stress regulation. Soybean hairy roots expressing GmCCS7/GmCCS24 showed improved drought stress tolerance, with increased SOD and other antioxidant enzyme activities. The results of this study provide reference value in-depth study CCS gene family, and important gene resources for the genetic improvement of soybean drought stress tolerance.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa
    Crizel, Rosane Lopes
    Perin, Ellen Cristina
    Vighi, Isabel Lopes
    Woloski, Rafael
    Seixas, Amilton
    Pinto, Luciano da Silva
    Rombaldi, Cesar Valmor
    Galli, Vanessa
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [22] Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa
    Rosane Lopes Crizel
    Ellen Cristina Perin
    Isabel Lopes Vighi
    Rafael Woloski
    Amilton Seixas
    Luciano da Silva Pinto
    César Valmor Rombaldi
    Vanessa Galli
    Scientific Reports, 10
  • [23] Genome-wide identification and abiotic stress responses of DGK gene family in maize
    Gu, Yingnan
    Zhao, Changjiang
    He, Lin
    Yan, Bowei
    Dong, Jiejing
    Li, Zuotong
    Yang, Kejun
    Xu, Jingyu
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2018, 27 (02) : 156 - 166
  • [24] Genome-wide identification and abiotic stress responses of DGK gene family in maize
    Yingnan Gu
    Changjiang Zhao
    Lin He
    Bowei Yan
    Jiejing Dong
    Zuotong Li
    Kejun Yang
    Jingyu Xu
    Journal of Plant Biochemistry and Biotechnology, 2018, 27 : 156 - 166
  • [25] Genome-Wide Identification of GmSPS Gene Family in Soybean and Expression Analysis in Response to Cold Stress
    Shen, Jiafang
    Xu, Yiran
    Yuan, Songli
    Jin, Fuxiao
    Huang, Yi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Zhou, Xinan
    Zhang, Chanjuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (16)
  • [26] Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean
    Ning Wang
    Xiujuan Zhong
    Yahui Cong
    Tingting Wang
    Songnan Yang
    Yan Li
    Junyi Gai
    Scientific Reports, 6
  • [27] Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean
    Wang, Ning
    Zhong, Xiujuan
    Cong, Yahui
    Wang, Tingting
    Yang, Songnan
    Li, Yan
    Gai, Junyi
    SCIENTIFIC REPORTS, 2016, 6
  • [28] Genome-wide identification and characterization of the lettuce GASA family in response to abiotic stresses
    Lee, Sun Ho
    Yoon, Jin Seok
    Jung, Woo Joo
    Kim, Dae Yeon
    Seo, Yong Weon
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [29] Genome-wide identification and characterization of the lettuce GASA family in response to abiotic stresses
    Sun Ho Lee
    Jin Seok Yoon
    Woo Joo Jung
    Dae Yeon Kim
    Yong Weon Seo
    BMC Plant Biology, 23
  • [30] Genome-Wide Identification of MsICE Gene Family in Medicago sativa and Expression Analysis of the Response to Abiotic Stress
    Wang, Baiji
    Liu, Qianning
    Xu, Wen
    Yuan, Yuying
    Tuluhong, Muzhapaer
    Yu, Jinqiu
    Cui, Guowen
    AGRONOMY-BASEL, 2024, 14 (09):