Maximally nonlinear functions over finite fields

被引:3
|
作者
Ryabov, Vladimir G.
机构
[1] NP GST
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2023年 / 33卷 / 01期
关键词
finite field; q-valued logic; nonlinearity; affine functions; bent functions; VALUED LOGIC FUNCTIONS; RESTRICTIONS;
D O I
10.1515/dma-2023-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-place function over a field F-q with q elements is called maximally nonlinear if it has the largest nonlinearity among all q-valued n-place functions. We show that, for even n >= 2, a function is maximally nonlinear if and only if its nonlinearity is q(n-1)(q-1)-q(n/2-1); for n = 1, the corresponding criterion for maximal nonlinearity is q - 2. For q > 2 and even n >= 2, we describe the set of all maximally nonlinear quadratic functions and find its cardinality. In this case, all maximally nonlinear quadratic functions are quadratic bent functions and their number is smaller than the halved number of the bent functions.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 50 条
  • [31] Characterizations of a class of planar functions over finite fields
    Chen, Ruikai
    Mesnager, Sihem
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 95
  • [32] Nonvanishing of hyperelliptic zeta functions over finite fields
    Ellenberg, Jordan S.
    Li, Wanlin
    Shusterman, Mark
    ALGEBRA & NUMBER THEORY, 2020, 14 (07) : 1895 - 1909
  • [33] Cyclotomic matrices and hypergeometric functions over finite fields
    Wu, Hai-Liang
    She, Yue-Feng
    Wang, Li-Yuan
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 82
  • [34] On the stabilizer of the graph of linear functions over finite fields
    Smaldore, Valentino
    Zanella, Corrado
    Zullo, Ferdinando
    FORUM MATHEMATICUM, 2025,
  • [35] COUNTING POINTS OVER FINITE FIELDS AND HYPERGEOMETRIC FUNCTIONS
    Salerno, Adriana
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (01) : 137 - 157
  • [36] Several classes of bent functions over finite fields
    Xi Xie
    Nian Li
    Xiangyong Zeng
    Xiaohu Tang
    Yao Yao
    Designs, Codes and Cryptography, 2023, 91 : 309 - 332
  • [37] Zeta-functions of Curves over Finite Fields
    Chan, Kin Wai
    arXiv,
  • [38] VALUE SETS OF FUNCTIONS OVER FINITE-FIELDS
    COHEN, SD
    ACTA ARITHMETICA, 1981, 39 (04) : 339 - 359
  • [39] Special values of hypergeometric functions over finite fields
    Evans, Ron
    Lam, Frank
    RAMANUJAN JOURNAL, 2009, 19 (02): : 151 - 162
  • [40] Zeta functions of bielliptic surfaces over finite fields
    S. Yu. Rybakov
    Mathematical Notes, 2008, 83 : 246 - 256