Boundaries of quantum supremacy via random circuit sampling
被引:13
|
作者:
Zlokapa, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Caltech, Div Phys Math & Astron, Pasadena, CA 91125 USACaltech, Div Phys Math & Astron, Pasadena, CA 91125 USA
Zlokapa, Alexander
[1
]
Villalonga, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Google AI Quantum, Venice, CA 90291 USACaltech, Div Phys Math & Astron, Pasadena, CA 91125 USA
Villalonga, Benjamin
[2
]
Boixo, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Google AI Quantum, Venice, CA 90291 USACaltech, Div Phys Math & Astron, Pasadena, CA 91125 USA
Boixo, Sergio
[2
]
Lidar, Daniel A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southern Calif, Dept Elect & Comp Engn Chem & Phys & Astron, Los Angeles, CA 90089 USA
Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USACaltech, Div Phys Math & Astron, Pasadena, CA 91125 USA
Lidar, Daniel A.
[3
,4
]
机构:
[1] Caltech, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Google AI Quantum, Venice, CA 90291 USA
[3] Univ Southern Calif, Dept Elect & Comp Engn Chem & Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
Google's quantum supremacy experiment heralded a transition point where quantum computers can evaluate a computational task, random circuit sampling, faster than classical supercomputers. We examine the constraints on the region of quantum advantage for quantum circuits with a larger number of qubits and gates than experimentally implemented. At near-term gate fidelities, we demonstrate that quantum supremacy is limited to circuits with a qubit count and circuit depth of a few hundred. Larger circuits encounter two distinct boundaries: a return of a classical advantage and practically infeasible quantum runtimes. Decreasing error rates cause the region of a quantum advantage to grow rapidly. At error rates required for early implementations of the surface code, the largest circuit size within the quantum supremacy regime coincides approximately with the smallest circuit size needed to implement error correction. Thus, the boundaries of quantum supremacy may fortuitously coincide with the advent of scalable, error-corrected quantum computing.