A Survey of Object Detection for UAVs Based on Deep Learning

被引:25
|
作者
Tang, Guangyi [1 ]
Ni, Jianjun [1 ,2 ]
Zhao, Yonghao [1 ]
Gu, Yang [1 ]
Cao, Weidong [1 ,2 ]
机构
[1] Hohai Univ, Coll Artificial Intelligence & Automat, Changzhou 213200, Peoples R China
[2] Hohai Univ, Coll Informat Sci & Engn, Changzhou 213022, Peoples R China
基金
中国国家自然科学基金;
关键词
object detection; unmanned aerial vehicles; deep learning; computer vision; CONVOLUTIONAL NETWORKS; VEHICLE DETECTION; NEURAL-NETWORK; DATASET;
D O I
10.3390/rs16010149
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the rapid development of object detection technology for unmanned aerial vehicles (UAVs), it is convenient to collect data from UAV aerial photographs. They have a wide range of applications in several fields, such as monitoring, geological exploration, precision agriculture, and disaster early warning. In recent years, many methods based on artificial intelligence have been proposed for UAV object detection, and deep learning is a key area in this field. Significant progress has been achieved in the area of deep-learning-based UAV object detection. Thus, this paper presents a review of recent research on deep-learning-based UAV object detection. This survey provides an overview of the development of UAVs and summarizes the deep-learning-based methods in object detection for UAVs. In addition, the key issues in UAV object detection are analyzed, such as small object detection, object detection under complex backgrounds, object rotation, scale change, and category imbalance problems. Then, some representative solutions based on deep learning for these issues are summarized. Finally, future research directions in the field of UAV object detection are discussed.
引用
收藏
页数:29
相关论文
共 50 条
  • [11] Survey on Deep Learning-Based Marine Object Detection
    Zhang, Ruolan
    Li, Shaoxi
    Ji, Guanfeng
    Zhao, Xiuping
    Li, Jing
    Pan, Mingyang
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [12] Deep Learning for Generic Object Detection: A Survey
    Li Liu
    Wanli Ouyang
    Xiaogang Wang
    Paul Fieguth
    Jie Chen
    Xinwang Liu
    Matti Pietikäinen
    International Journal of Computer Vision, 2020, 128 : 261 - 318
  • [13] Deep Learning for Generic Object Detection: A Survey
    Liu, Li
    Ouyang, Wanli
    Wang, Xiaogang
    Fieguth, Paul
    Chen, Jie
    Liu, Xinwang
    Pietikainen, Matti
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (02) : 261 - 318
  • [14] A survey of small object detection based on deep learning in aerial images
    Hua, Wei
    Chen, Qili
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [15] A Survey of Research and Application of Small Object Detection Based on Deep Learning
    Liu Y.
    Liu H.-Y.
    Fan J.-L.
    Gong Y.-C.
    Li Y.-H.
    Wang F.-P.
    Lu J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (03): : 590 - 601
  • [16] Object Detection based on Deep Learning
    Dong, Junyao
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VIRTUAL REALITY, AND VISUALIZATION (AIVRV 2021), 2021, 12153
  • [17] The Object Detection Based on Deep Learning
    Tang, Cong
    Feng, Yunsong
    Yang, Xing
    Zheng, Chao
    Zhou, Yuanpu
    2017 4TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE), 2017, : 723 - 728
  • [18] Deep Learning on Underwater Marine Object Detection: A Survey
    Moniruzzaman, Md.
    Islam, Syed Mohammed Shamsul
    Bennamoun, Mohammed
    Lavery, Paul
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 150 - 160
  • [19] Survey and Performance Analysis of Deep Learning Based Object Detection in Challenging Environments
    Ahmed, Muhammad
    Hashmi, Khurram Azeem
    Pagani, Alain
    Liwicki, Marcus
    Stricker, Didier
    Afzal, Muhammad Zeshan
    SENSORS, 2021, 21 (15)
  • [20] A survey of deep learning-based object detection: Application and open issues
    Abdullah, Shaymaa Tarkan
    AL-Nuaimi, Bashar Talib
    Abed, Hazim Noman
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1495 - 1504