Spreading resistance and conductance anisotropy in multilayer MoS2

被引:3
|
作者
Vijayan, Gautham [1 ]
Uzhansky, Michael [1 ]
Koren, Elad [1 ]
机构
[1] Technion Israel Inst Technol, Fac Mat Sci & Engn, Nanoscale Elect Mat & Devices Lab, IL-3200003 Haifa, Israel
基金
以色列科学基金会;
关键词
ELECTRICAL-RESISTIVITY;
D O I
10.1063/5.0199255
中图分类号
O59 [应用物理学];
学科分类号
摘要
The increasing interest in realizing the full potential of two-dimensional (2D) layered materials for developing electronic components strongly relies on quantitative understanding of their anisotropic electronic properties. Herein, we use conductive atomic force microscopy to study the anisotropic electrical conductance of multilayer MoS(2 )by measuring the spreading resistance of circular structures of different radii ranging from 150 to 400 nm. The observed inverse scaling of the spreading resistance with contact radius, with an effective resistivity of rho eff = 2.89 Omega cm, is compatible with a diffusive transport model. A successive etch of the MoS2 nanofilms was used to directly measure the out-of-plane resistivity, i.e., 29.43 +/- 7.78 Omega cm. Based on the scaling theory for conduction in anisotropic materials, the model yields an in-plane resistivity of 0.28 +/- 0.07 Omega cm and an anisotropy of similar to 100 for the ratio between the in-plane and out-of-plane resistivities. The obtained anisotropy indicates that the probed surface area can extend up to 400 times the metal contact area, whereas the penetration depth is limited to roughly 20% of the contact radius. Hence, for contact radius less than 3 nm, the conduction will be limited to the surface. Our investigation offers important insight into the anisotropic transport behavior of MoS2, a pivotal factor enabling the design optimization of miniaturized devices based on 2D materials. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Visualization of Local Conductance in MoS2/WSe2 Heterostructure Transistors
    Wu, Di
    Li, Wei
    Rai, Amritesh
    Wu, Xiaoyu
    Movva, Hema C. P.
    Yogeesh, Maruthi N.
    Chu, Zhaodong
    Banerjee, Sanjay K.
    Akinwande, Deji
    Lai, Keji
    NANO LETTERS, 2019, 19 (03) : 1976 - 1981
  • [42] Electronic Structure of Twisted Bilayers of Graphene/MoS2 and MoS2/MoS2
    Wang, Zilu
    Chen, Qian
    Wang, Jinlan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09): : 4752 - 4758
  • [43] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jiang, Jin-Wu
    Zhuang, Xiaoying
    Rabczuk, Timon
    SCIENTIFIC REPORTS, 2013, 3
  • [44] Orientation Dependent Thermal Conductance in Single-Layer MoS2
    Jin-Wu Jiang
    Xiaoying Zhuang
    Timon Rabczuk
    Scientific Reports, 3
  • [45] Tuning Electrical Conductance of MoS2 Monolayers through Substitutional Doping
    Gao, Hui
    Suh, Joonki
    Cao, Michael C.
    Joe, Andrew Y.
    Mujid, Fauzia
    Lee, Kan-Heng
    Xie, Saien
    Poddar, Preeti
    Lee, Jae-Ung
    Kang, Kibum
    Kim, Philip
    Muller, David A.
    Park, Jiwoong
    NANO LETTERS, 2020, 20 (06) : 4095 - 4101
  • [46] Thermal boundary conductance of two-dimensional MoS2 interfaces
    Suryavanshi, Saurabh, V
    Gabourie, Alexander J.
    Farimani, Amir Barati
    Pop, Eric
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (05)
  • [47] Quantum conductance of MoS2 armchair strained nanoribbons: a theoretical study
    Tabatabaei, F.
    Sarsari, I. Abdolhosseini
    Ghavami, B.
    Bafekry, A.
    Stampfl, C.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (11):
  • [48] Terahertz Optical Conductance of n-type Monolayer MoS2
    Xiao, Y. M.
    Xu, W.
    INTEGRATED FERROELECTRICS, 2014, 153 (01) : 171 - 176
  • [49] Ballistic Conductance in a Topological 1T '-MoS2 Nanoribbon
    V. Sverdlov
    E. A.-M. El-Sayed
    H. Kosina
    S. Selberherr
    Semiconductors, 2020, 54 : 1713 - 1715
  • [50] Ballistic Conductance in a Topological 1T '-MoS2 Nanoribbon
    Sverdlov, V
    El-Sayed, E. A-M
    Kosina, H.
    Selberherr, S.
    SEMICONDUCTORS, 2020, 54 (12) : 1713 - 1715