Detached eddy simulation of the heat release characteristics of H2-O2 reacting flow in supercritical water

被引:4
|
作者
Bei, Lijing [1 ]
Su, Di [1 ]
Zhang, Jiawei [1 ]
Jin, Hui [1 ]
Ge, Zhiwei [1 ]
Chen, Yunan [1 ]
Guo, Liejin [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
国家重点研发计划;
关键词
Supercritical water; Oxidation; H; 2-O; 2; reaction; Hydrogen; Start-up process; POWER-GENERATION SYSTEM; HYDROGEN-PRODUCTION; FUNDAMENTAL KINETICS; GASIFICATION; OXIDATION; MODEL;
D O I
10.1016/j.fuel.2023.129559
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The mild H2-O2 reaction is critical for coal-gasification-based polygeneration of power and heat in supercritical water. Time-averaged methods turbulence studies cannot accurately predict the flow, reaction, and heat release during the start-up of the H2-O2 reaction, which was crucial for the start-up and safe operation of supercritical water environment oxidation reactors (SCOR). In contrast, ordinary time-accurate method studies require a tremendous computational effort. Detached eddy simulation (DES), a hybrid model, could balance numerical simulation's computational accuracy and speed. Consequently, this paper has conducted a DES investigation on the start-up process of H2-O2 reaction in SCW with detailed kinetics. Through this article, the spatio-temporal distribution and reaction structure of the H2-O2 reaction start-up process had been unveiled. The process could be divided into the transition and the steady stage, with H2 mass fraction (XH2) and inlet temperature significantly affecting the H2-O2 reaction start-up process. Moreover, the stability of the H2-O2 reaction start-up process was heavily influenced by the XH2. This numerical study could guide the design, scale-up and optimization of SCOR.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline
    Li, Kang
    Zhou, Xuejin
    Tu, Ran
    Xie, Qiyuan
    Jiang, Xi
    ENERGY, 2014, 71 : 665 - 672
  • [42] A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system
    Yang, Xueming
    Duan, Congcong
    Xu, Jiangxin
    Liu, Yuanbin
    Cao, Bingyang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 135 : 413 - 424
  • [43] Flow and heat transfer characteristics of supercritical CO2 in a natural circulation loop
    Cao, Yuhui
    Zhang, Xin-Rong
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 58 : 52 - 60
  • [44] Heat transfer characteristics of supercritical CO2 flow in metal foam tubes
    Liu, Zhan-Bin
    He, Ya-Ling
    Li, Yin-Shi
    Qu, Zhi-Guo
    Tao, Wen-Quan
    JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 101 : 36 - 47
  • [45] Heat transfer and flow characteristics of AL2O3-water nanofluid in a double tube heat exchanger
    Darzi, A. A. Rabienataj
    Farhadi, Mousa
    Sedighi, Kurosh
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 47 : 105 - 112
  • [46] Heat transfer and flow characteristics of hybrid Al2O3/TiO2–water nanofluid in a minichannel heat sink
    Mohammad Ataei
    Farhad Sadegh Moghanlou
    Saeed Noorzadeh
    Mohammad Vajdi
    Mehdi Shahedi Asl
    Heat and Mass Transfer, 2020, 56 : 2757 - 2767
  • [47] Heat transfer and flow characteristics of hybrid Al2O3/TiO2-water nanofluid in a minichannel heat sink
    Ataei, Mohammad
    Sadegh Moghanlou, Farhad
    Noorzadeh, Saeed
    Vajdi, Mohammad
    Shahedi Asl, Mehdi
    HEAT AND MASS TRANSFER, 2020, 56 (09) : 2757 - 2767
  • [48] Numerical Simulation of Flow Characteristics for Supercritical CO2-Sprayed Polyurethane Resin
    Li, Chichao
    Zhang, Chengrui
    Xiang, Minghua
    Chen, Qing
    Luo, Zhenyang
    Luo, Yanlong
    POLYMERS, 2024, 16 (07)
  • [49] Measurements of OH and H2O for reacting flow in a supersonic combusting ramjet combustor
    Colorado Sch of Mines, Golden, United States
    J Propul Power, 6 (1154-1161):
  • [50] Measurements of the heat capacity at constant volume of H2O+Na2SO4 in near-critical and supercritical water
    Abdulagatov, IM
    Dvoryanchikov, VI
    Mursalov, BA
    Kamalov, AN
    FLUID PHASE EQUILIBRIA, 1998, 150 : 525 - 535