Mechanism of Jiawei Zhengqi Powder in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking

被引:1
|
作者
Zhao, Chao [1 ]
Zhi, ChenYang [2 ]
Zhou, JianHua [2 ]
机构
[1] Changchun Univ Chinese Med, Coll Tradit Chinese Med, Changchun, Peoples R China
[2] Changchun Univ Chinese Med, Affiliated Hosp, Anorectal Diag & Treatment Ctr, Changchun, Peoples R China
关键词
D O I
10.1155/2023/8397111
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Objective. Ulcerative colitis is an intestinal condition that severely affects the life quality of a patient. Jiawei Zhengqi powder (JWZQS) has some therapeutic benefits for ulcerative colitis. The current study investigated the therapeutic mechanism of JWZQS for ulcerative colitis using a network pharmacology analytical approach. Methods. In this study, network pharmacology was used to investigate the potential mechanism of JWZQS in treating ulcerative colitis. The common targets between the two were identified, and a network map was created with the Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses of JWZQS was performed using the Metascape database. Protein-protein interaction networks (PPI) was created to screen core targets and main components, and molecular docking was conducted between the main components and core targets. The expression levels of IL-1 beta, IL-6, and TNF-alpha were detected in animal experiments. Their effect on the NF-kappa B signaling pathway and the protective mechanism of JWZQS on the colon by tight junction protein were investigated. Results. There were 2127 potential ulcerative colitis targets and 35 components identified, including 201 non-reproducible targets and 123 targets shared by drugs and diseases. Following the analysis, we discovered 13 significant active components and 10 core targets. The first 5 active ingredients and their corresponding targets were molecularly docked, and the results showed a high level of affinity. GO analysis showed that JWZQS participate in multiple biological processes to treat UC. KEGG analysis showed that JWZQS may be involved in regulating multiple pathways, and the NF-kappa B signaling pathway was selected for analysis and verification. JWZQS has been shown in animal studies to effectively inhibit the NF-kappa B pathway; reduce the expression of IL-1 beta, TNF-alpha, and IL-6 in colon tissue; and increase the expression of ZO-1, Occludin, and Claudin-1. Conclusion. The network pharmacological study provides preliminary evidence that JWZQS can treat UC through multiple components and targets. JWZQS has been shown in animal studies to effectively reduce the expression levels of IL-1 beta, TNF-alpha, and IL-6, inhibit the phosphorylation of the NF-kappa B pathway, and alleviate colon injury. JWZQS can be used in clinical, but the precise mechanism of UC treatment requires further investigation.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology
    Dong, Yankai
    Tao, Bo
    Xue, Xing
    Feng, Caixia
    Ren, Yating
    Ma, Hengyu
    Zhang, Junli
    Si, Yufang
    Zhang, Sisi
    Liu, Si
    Li, Hui
    Zhou, Jiahao
    Li, Ge
    Wang, Zhifei
    Xie, Juanping
    Zhu, Zhongliang
    BMC COMPLEMENTARY MEDICINE AND THERAPIES, 2021, 21 (01)
  • [32] Molecular mechanism of Epimedium in the treatment of vascular dementia based on network pharmacology and molecular docking
    Xie, Chenchen
    Tang, Hao
    Liu, Gang
    Li, Changqing
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [33] Exploring the Action Mechanism of Rosa roxburghii Fruit Flavonoids in the Intervention of Ulcerative Colitis Based on Network Pharmacology, Molecular Docking and Experimental Verification
    Pu X.
    Yuan M.
    Tan S.
    Xie G.
    Tao Y.
    Lou J.
    Lu G.
    Xu H.
    Shipin Kexue/Food Science, 2024, 45 (10): : 147 - 157
  • [34] Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification
    Xu, Lin
    Zhang, Jiaqi
    Wang, Yifan
    Zhang, Zedan
    Wang, Fengyun
    Tang, Xudong
    BIOSCIENCE REPORTS, 2021, 41 (02)
  • [35] Mechanism of icariin for the treatment of osteoarthritis based on network pharmacology and molecular docking method
    Gu, Jin-Yu
    Li, Fa-Jie
    Hou, Cheng-Zhi
    Zhang, Yue
    Bai, Zi-Xing
    Zhang, Qing
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (08): : 5084 - 5084
  • [36] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424
  • [37] Mechanism of glycitein in the treatment of colon cancer based on network pharmacology and molecular docking
    Xiang, Tao
    Jin, Weibiao
    LIFESTYLE GENOMICS, 2023, 16 (01) : 1 - 10
  • [38] Mechanism of salidroside in the treatment of endometrial cancer based on network pharmacology and molecular docking
    Panpan Yang
    Yihong Chai
    Min Wei
    Yan Ge
    Feixue Xu
    Scientific Reports, 13
  • [39] The mechanism of Croci stigma in the treatment of melasma based on network pharmacology and molecular docking
    Yin, Wenxian
    Zhao, Fulan
    He, Yingmeng
    Lai, Hui
    Sun, Mengqi
    JOURNAL OF COSMETIC DERMATOLOGY, 2023, 22 (07) : 2105 - 2114
  • [40] Mechanism of Taxanes in the Treatment of Lung Cancer Based on Network Pharmacology and Molecular Docking
    Zhang, Yajing
    Zhao, Zirui
    Li, Wenlong
    Tang, Yuanhu
    Wang, Shujie
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2023, 45 (08) : 6564 - 6582