Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance

被引:11
|
作者
Lan, Shunbo [1 ]
Lin, Rui [1 ]
Dong, Mengcheng [1 ]
Lu, Kai [1 ]
Lou, Mingyu [1 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
关键词
Crack; Image identification; Feature extraction; PEMFC; Microporous layer; MICRO-POROUS LAYER; GAS-DIFFUSION LAYER; WATER MANAGEMENT; CLASSIFICATION; MORPHOLOGY; IMPROVEMENT; DURABILITY; EFFICIENT;
D O I
10.1016/j.energy.2022.126340
中图分类号
O414.1 [热力学];
学科分类号
摘要
Proton exchange membrane fuel cell (PEMFC) is considered as a potential power source for future automotive applications and microporous layer (MPL) is one of the core components. The cracks on the surface of micro-porous layer formed during the deposition process change the overall transport capacity and effect the output performance of fuel cells by regulating water management. In this work, the image recognition and feature extraction of microporous layer surface crack is proposed and elaborated in detail. The simple, fast and accurate method based on image recognition is realized by programming a regional connectivity algorithm and calcu-lating the geometric features of the circumscribed geometry of the cracks. The application of artificial intelli-gence image processing technology at the micron level provides convenience for data analysis of crack distribution and improvement of microstructure. In this paper, scanning electron microscope (SEM) images of different carbon paper samples are taken, and the samples are tested under the same conditions to verify the feasibility and accuracy of the crack identification method, and to study the effect of cracks on the performance of fuel cells. The results prove that the image recognition algorithm can quickly and accurately identify the characteristics of cracks after Gaussian filtering and grayscale thresholding. Besides, it is found that cracks have impact on fuel cells and surface slender-shaped cracks with large area can improve the performance of fuel cells at high current densities. The method proposed in this paper can be used to improve the existing PEMFC design and quality check in process production by analyzing the local crack characteristics of the same sample and statistical data. In addition, the results of this paper are instructive for further water management research on microporous layer in fuel cells and can be used as a reference for practical applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Microporous layer based on SiC for high temperature proton exchange membrane fuel cells
    Lobato, Justo
    Zamora, Hector
    Canizares, Pablo
    Plaza, Jorge
    Andres Rodrigo, Manuel
    JOURNAL OF POWER SOURCES, 2015, 288 : 288 - 295
  • [22] Effects of microporous layer penetration ratio and substrate carbonization temperature on the performance of proton exchange membrane fuel cells
    Sim, Jaebong
    Kang, Minsoo
    Min, Kyoungdoug
    Lee, Eunsook
    Jyoung, Jy-Young
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (09) : 4825 - 4838
  • [23] Gradient microporous layer with controllable aperture for high-performance proton-exchange membrane fuel cells
    Jie Guo
    Wei Wang
    Ruhua Shi
    Tainyi Gu
    Xian Wei
    Jiaqing Zhao
    Ming Chao
    Qian Zhang
    Ruizhi Yang
    Journal of Materials Science, 2024, 59 : 3561 - 3572
  • [24] Effects of microporous layer penetration ratio and substrate carbonization temperature on the performance of proton exchange membrane fuel cells
    Jaebong Sim
    Minsoo Kang
    Kyoungdoug Min
    Eunsook Lee
    Jy-Young Jyoung
    Journal of Mechanical Science and Technology, 2022, 36 : 4825 - 4838
  • [25] Gradient microporous layer with controllable aperture for high-performance proton-exchange membrane fuel cells
    Guo, Jie
    Wang, Wei
    Shi, Ruhua
    Gu, Tainyi
    Wei, Xian
    Zhao, Jiaqing
    Chao, Ming
    Zhang, Qian
    Yang, Ruizhi
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (08) : 3561 - 3572
  • [26] Effects of Microporous Layer on PBI-based Proton Exchange Membrane Fuel Cell Performance
    Liu, Chun-Ting
    Chang, Min-Hsing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (03): : 3687 - 3695
  • [27] Roles of MWCNTs in a self-standing microporous layer for proton exchange membrane fuel cells
    Hwang, Sungwoo
    Cho, Jaewoo
    Kang, Seunghun
    Noh, Seungtak
    Park, Sehkyu
    FUEL, 2024, 374
  • [28] The microporous layer in proton exchange membrane fuel cells, from transport mechanism to structural design
    Wu, Ningran
    Liu, Ye
    Tian, Xinxin
    Liu, Fuyao
    Ma, Yuchen
    Zhang, Shengping
    Zhang, Qian
    Hou, Dandan
    Qi, Yue
    Yang, Ruizhi
    Wang, Luda
    JOURNAL OF POWER SOURCES, 2023, 580
  • [29] Structural design of microporous layer to mitigate carbon corrosion in proton exchange membrane fuel cells
    Chen, Liang
    Lin, Rui
    Lou, Mingyu
    Lu, Kai
    CARBON, 2022, 199 : 189 - 199
  • [30] Graded Structure Design of the Microporous Layer for Improving the Mass Transfer Performance of Proton-Exchange Membrane Fuel Cells
    Wang, Xinyuan
    Wu, Gang-Ping
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6596 - 6605