DYNAMICS OF RANDOM DYNAMICAL SYSTEMS

被引:0
|
作者
Azjargal, Enkhbayar [1 ]
Choinkhor, Zorigt [1 ]
Tsegmid, Nyamdavaa [1 ]
机构
[1] Mongolian Natl Univ Educ, Dept Math, Baga Toiruu 14, Ulan Bator 141910068, Mongolia
关键词
& omega; -expansive; shadowing property; topologically stable;
D O I
10.4134/BKMS.b220595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the concept of ?-expansive of random map on compact metric spaces P. Also we introduce the definitions of positively, negatively shadowing property and shadowing property for two-sided RDS. Then we show that if f is ?-expansive and has the shad-owing property for w, then f is topologically stable for ?.
引用
收藏
页码:1131 / 1139
页数:9
相关论文
共 50 条
  • [41] Concept of complexity in random dynamical systems
    Loreto, V
    Paladin, G
    Vulpiani, A
    PHYSICAL REVIEW E, 1996, 53 (03): : 2087 - 2098
  • [42] Invariant measures for random dynamical systems
    Horbacz, Katarzyna
    DISSERTATIONES MATHEMATICAE, 2008, (451) : 5 - +
  • [43] Conley index for random dynamical systems
    Liu, Zhenxin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (07) : 1603 - 1628
  • [44] On the effects of random time in dynamical systems
    Jumarie, G
    KYBERNETES, 2000, 29 (9-10) : 1264 - 1271
  • [45] Estimation of Parameters in Random Dynamical Systems
    Konsulke, Silke
    van den Boogaart, K. Gerard
    Ballani, Fellix
    Franke, Markus
    Sauke, Martin
    MATHEMATICS OF PLANET EARTH, 2014, : 843 - 846
  • [46] Anomalous Diffusion in Random Dynamical Systems
    Sato, Yuzuru
    Klages, Rainer
    PHYSICAL REVIEW LETTERS, 2019, 122 (17)
  • [47] On the concept of complexity of random dynamical systems
    Loreto, V
    Serva, M
    Vulpiani, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (03): : 225 - 243
  • [48] STOCHASTIC DYNAMICS II: FINITE RANDOM DYNAMICAL SYSTEMS, LINEAR REPRESENTATION, AND ENTROPY PRODUCTION
    Ye, Felix X-F
    Qian, Hong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4341 - 4366
  • [49] Stable laws for random dynamical systems
    Aimino, Romain
    Nicol, Matthew
    Torok, Andrew
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (11) : 3041 - 3090
  • [50] INVARIANT FOLIATIONS FOR RANDOM DYNAMICAL SYSTEMS
    Li, Ji
    Lu, Kening
    Bates, Peter W.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (09) : 3639 - 3666