Fuzzy mixture distribution;
Exponential distribution;
Rayleigh density function;
Maximum likelihood estimation;
Method of moments;
Fuzzy data;
MAXIMUM-LIKELIHOOD-ESTIMATION;
FINITE MIXTURE;
PARAMETERS;
D O I:
10.1108/IJQRM-10-2022-0300
中图分类号:
C93 [管理学];
学科分类号:
12 ;
1201 ;
1202 ;
120202 ;
摘要:
Purpose In this paper, a mixture of exponential and Rayleigh distributions in the proportions a and 1 - a and all the parameters in the mixture distribution are estimated based on fuzzy data.Design/methodology/approach The methods such as maximum likelihood estimation (MLE) and method of moments (MOM) are applied for estimation. Fuzzy data of triangular fuzzy numbers and Gaussian fuzzy numbers for different sample sizes are considered to illustrate the resulting estimation and to compare these methods. In addition to this, the obtained results are compared with existing results for crisp data in the literature.Findings The application of fuzziness in the data will be very useful to obtain precise results in the presence of vagueness in data. Mean square errors (MSEs) of the resulting estimators are computed using crisp data and fuzzy data. On comparison, in terms of MSEs, it is observed that maximum likelihood estimators perform better than moment estimators.Originality/value Classical methods of obtaining estimators of unknown parameters fail to give realistic estimators since these methods assume the data collected to be crisp or exact. Normally, such case of precise data is not always feasible and realistic in practice. Most of them will be incomplete and sometimes expressed in linguistic variables. Such data can be handled by generalizing the classical inference methods using fuzzy set theory.
机构:
Shenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R ChinaShenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
Tian, Weizhong
Tian, Chengliang
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R ChinaShenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
Tian, Chengliang
Li, Sha
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R ChinaShenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
Li, Sha
Zhang, Yunchu
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R ChinaShenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
Zhang, Yunchu
Han, Jiayi
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R ChinaShenzhen Technol Univ, Coll Big data & Internet, Shenzhen 518118, Peoples R China
机构:
Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi ArabiaPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
Alotaibi, Refah
Nassar, Mazen
论文数: 0引用数: 0
h-index: 0
机构:
King Abdulaziz Univ, Fac Sci, Jeddah 21589, Saudi Arabia
Zagazig Univ, Fac Commerce, Dept Stat, Zagazig 44519, EgyptPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
Nassar, Mazen
Ghosh, Indranil
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Math & Stat, Wilmington, NC 28403 USAPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
Ghosh, Indranil
论文数: 引用数:
h-index:
机构:
Rezk, Hoda
Elshahhat, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Zagazig Univ, Fac Technol & Dev, Zagazig 44519, EgyptPrincess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
机构:
Univ Waterloo, Dept Management Sci, Waterloo, ON N2L 3G1, CanadaUniv Waterloo, Dept Management Sci, Waterloo, ON N2L 3G1, Canada
He, Qi-Ming
Zhang, Hanqin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing, Peoples R China
NUS Business Sch, Singapore, SingaporeUniv Waterloo, Dept Management Sci, Waterloo, ON N2L 3G1, Canada