Heat and mass transfer of water-based copper and alumina hybrid nanofluid over a stretching sheet

被引:4
|
作者
Mishra, Swetapadma [1 ]
Swain, Kharabela [2 ]
Dalai, Renuprava [1 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Met & Mat Engn, Burla, Odisha, India
[2] Gandhi Inst Technol, Dept Math, Bhubaneswar 752054, Odisha, India
关键词
Joule heating; stretching sheet; suction; injection; thermal radiation; viscous dissipation; ENTROPY ANALYSIS; THERMAL-RADIATION; SLIP-FLOW;
D O I
10.1002/htj.22736
中图分类号
O414.1 [热力学];
学科分类号
摘要
Hybrid nanofluids (HNFs) are vital in engineering and industrial applications due to significant effective thermal conductivity as compared with regular fluid and nanofluid (NF). The HNF is a process of the conglomeration of two or more nanoparticles of different thermophysical properties to affect the thermal transport characteristics of base fluid, particularly in gearing up heat switch charge. Further, the impact of HNF combined with stretching and squeezing of bounding surface has direct application in thinning/thickening of polymeric sheets in the chemical industry. The current study analyzes the flow of HNF over a stretching sheet under the influence of chemical reaction as well as suction/injection. We have considered water (H2O) as the base fluid and copper (Cu), and aluminum oxide (Al2O3) as nanoparticles. The consequences of the magnetic field, viscous dissipation, and Joule heating are also to be investigated. The resulting partial differential equations are transformed into nonlinear ordinary differential equations using suitable similarity transformations. The numerical solutions to governing equations are obtained with the help of MATLAB software using the bvp4c solver. The important finding is: the rate of heat transfer of HNF is higher than that of NF as well as base fluid. Moreover, contributions of higher Eckert number and radiation parameter are to increase the temperature in the flow domain, whereas the Prandtl number reduces it. It is further noticed that heavier species as well as viscous dissipation decline the level of concentration across the flow field.
引用
收藏
页码:1198 / 1214
页数:17
相关论文
共 50 条
  • [21] Free Convection in Heat Transfer Flow over a Moving Sheet in Alumina Water Nanofluid
    Singh, Padam
    Kumar, Andmanoj
    JOURNAL OF ENGINEERING, 2014, 2014
  • [22] Heat and mass transfer in thin film flow of Casson nanofluid over an unsteady stretching sheet
    Govindasamy, Gomathy
    Bangalore, Rushi Kumar
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023,
  • [23] Heat and mass transfer flow of a viscoelastic nanofluid over a stretching/ shrinking sheet with slip condition
    Ishak, Nazila
    Hussanan, Abid
    Mohamed, Muhammad Khairul Anuar
    Rosli, Norhayati
    Salleh, Mohd Zuki
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON AUTOMOTIVE INNOVATION GREEN ENERGY VEHICLE (AIGEV 2018), 2019, 2059
  • [24] Dual solutions of heat and mass transfer of nanofluid over a stretching/shrinking sheet with thermal radiation
    Poulomi De
    Hiranmoy Mondal
    Uttam Kumar Bera
    Meccanica, 2016, 51 : 117 - 124
  • [25] Dual solutions of heat and mass transfer of nanofluid over a stretching/shrinking sheet with thermal radiation
    De, Poulomi
    Mondal, Hiranmoy
    Bera, Uttam Kumar
    MECCANICA, 2016, 51 (01) : 117 - 124
  • [26] Effect of Cattaneo - Christov heat flux on heat and mass transfer characteristics of Maxwell hybrid nanofluid flow over stretching/shrinking sheet
    Reddy, P. Sudarsana
    Sreedevi, P.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [27] Flow and Heat Transfer to Sisko Nanofluid over a Nonlinear Stretching Sheet
    Khan, Masood
    Malik, Rabia
    Munir, Asif
    Khan, Waqar Azeem
    PLOS ONE, 2015, 10 (05):
  • [28] Partial Slip Flow and Heat Transfer over a Stretching Sheet in a Nanofluid
    Sharma, Rajesh
    Ishak, Anuar
    Pop, Ioan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [29] Flow and Heat Transfer of a Casson Nanofluid Over a Nonlinear Stretching Sheet
    Prasad, K. V.
    Vajravelu, K.
    Shivakumara, I. S.
    Vaidya, Hanumesh
    Basha, Neelufer. Z.
    JOURNAL OF NANOFLUIDS, 2016, 5 (05) : 743 - 752
  • [30] Numerical investigation of heat and mass transfer study on MHD rotatory hybrid nanofluid flow over a stretching sheet with gyrotactic microorganisms
    Yasmin, Humaira
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (09)