Mitochondrial metabolism as a dynamic regulatory hub to malignant transformation and anti-cancer drug resistance

被引:5
|
作者
Tomar, Manendra Singh [1 ]
Kumar, Ashok [2 ]
Shrivastava, Ashutosh [1 ]
机构
[1] King Georges Med Univ, Fac Med, Ctr Adv Res, Lucknow 226003, Uttar Pradesh, India
[2] All India Inst Med Sci AIIMS Bhopal, Dept Biochem, Bhopal 462020, Madhya Pradesh, India
关键词
Cancer; Mitochondria; Metabolism; Drug resistance; Oxidative phosphorylation; TCA cycle; Electron transport chain; CYTOCHROME-C-OXIDASE; ONE-CARBON METABOLISM; FATTY-ACID SYNTHASE; SEROLOGICAL DIAGNOSTIC BIOMARKERS; ASPARAGINE SYNTHETASE EXPRESSION; ISOCITRATE DEHYDROGENASE 1; CANCER-CELL METABOLISM; TUBULIN BETA-CHAIN; BREAST-CANCER; GLUTAMINE-METABOLISM;
D O I
10.1016/j.bbrc.2023.149382
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycolysis is the fundamental cellular process that permits cancer cells to convert energy and grow anaerobically. Recent developments in molecular biology have made it evident that mitochondrial respiration is critical to tumor growth and treatment response. As the principal organelle of cellular energy conversion, mitochondria can rapidly alter cellular metabolic processes, thereby fueling malignancies and contributing to treatment resistance. This review emphasizes the significance of mitochondrial biogenesis, turnover, DNA copy number, and mutations in bioenergetic system regulation. Tumorigenesis requires an intricate cascade of metabolic pathways that includes rewiring of the tricarboxylic acid (TCA) cycle, electron transport chain and oxidative phosphorylation, supply of intermediate metabolites of the TCA cycle through amino acids, and the interaction between mitochondria and lipid metabolism. Cancer recurrence or resistance to therapy often results from the cooperation of several cellular defense mechanisms, most of which are connected to mitochondria. Many clinical trials are underway to assess the effectiveness of inhibiting mitochondrial respiration as a potential cancer therapeutic. We aim to summarize innovative strategies and therapeutic targets by conducting a comprehensive review of recent studies on the relationship between mitochondrial metabolism, tumor development and therapeutic resistance.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Modeling the mitotic regulatory network identifies highly efficient anti-cancer drug combinations
    Wu, Yiran
    Zhuo, Xiaolong
    Dai, Ziwei
    Guo, Xiao
    Wang, Yao
    Zhang, Chuanmao
    Lai, Luhua
    MOLECULAR BIOSYSTEMS, 2015, 11 (02) : 497 - 505
  • [32] Anti-Cancer Drug Delivery System
    Li Yan
    Huang Wei
    Huang Ping
    Zhu Xinyuan
    Yan Deyue
    PROGRESS IN CHEMISTRY, 2014, 26 (08) : 1395 - 1408
  • [33] Valproic acid as anti-cancer drug
    Michaelis, Martin
    Doerr, Hans Wilhelm
    Cinatl, Jindrich, Jr.
    CURRENT PHARMACEUTICAL DESIGN, 2007, 13 (33) : 3378 - 3393
  • [34] MACROMOLECULE ANTI-CANCER DRUG CONJUGATES
    KATO, Y
    HARA, T
    JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 1983, 41 (12) : 1135 - 1142
  • [35] Mitosis as an anti-cancer drug target
    Anna-Leena Salmela
    Marko J. Kallio
    Chromosoma, 2013, 122 : 431 - 449
  • [36] FTORAFUR - NEW ANTI-CANCER DRUG
    BRENNER, H
    CHAITCHIK, S
    BRENNER, J
    DIGESTION, 1977, 16 (03) : 233 - 233
  • [37] CISPLATIN - NEW ANTI-CANCER DRUG
    ROZENCWEIG, M
    ABELE, R
    BEDOGNI, P
    KENIS, Y
    LOUVAIN MEDICAL, 1979, 98 (10): : 679 - 684
  • [38] Mitosis as an anti-cancer drug target
    Salmela, Anna-Leena
    Kallio, Marko J.
    CHROMOSOMA, 2013, 122 (05) : 431 - 449
  • [39] Anti-cancer Drug Development: Computational Strategies to Identify and Target Proteins Involved in Cancer Metabolism
    Mak, Lora
    Liggi, Sonia
    Tan, Lu
    Kusonmano, Kanthida
    Rollinger, Judith M.
    Koutsoukas, Alexios
    Glen, Robert C.
    Kirchmair, Johannes
    CURRENT PHARMACEUTICAL DESIGN, 2013, 19 (04) : 532 - 577
  • [40] Promising role of protein arginine methyltransferases in overcoming anti-cancer drug resistance
    Zhu, Yongxia
    Xia, Tong
    Chen, Da-Qian
    Xiong, Xia
    Shi, Lihong
    Zuo, Yueqi
    Xiao, Hongtao
    Liu, Li
    DRUG RESISTANCE UPDATES, 2024, 72