An Adaptive Levy Process Model for Remaining Useful Life Prediction

被引:2
|
作者
Wen Bincheng [1 ]
Xiao Mingqing [1 ]
Tang Xilang [2 ]
Li Jianfeng [3 ]
Zhu Haizhen [1 ]
机构
[1] Air Force Engn Univ, ATS Lab, Xian 710038, Peoples R China
[2] Air Force Engn Univ, Equipment Management & UAV Engn Coll, Xian 710038, Peoples R China
[3] Beijing Aeronaut Technol Res Ctr, Beijing 100000, Peoples R China
基金
中国国家自然科学基金;
关键词
Degradation; Data models; Stochastic processes; Mathematical models; Adaptation models; Predictive models; Estimation; Adaptive; Kalman filter; Levy process; prediction; remaining useful life (RUL); ATTITUDE ESTIMATION; SPACECRAFT ATTITUDE; VON MISES; FISHER DISTRIBUTION; ALGORITHM;
D O I
10.1109/TIM.2023.3332936
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Predicting remaining useful life (RUL) is a crucial part of prognostics and health management (PHM), which has attracted widespread attention in academia and industry over the past few decades. Effective estimation of RUL is predicated on the development of a suitable degradation model for the system. However, most of the existing models require offline learning of a priori parameters, which is not applicable in the absence of historical data. To solve this problem, a stochastic degradation model based on the Levy process is proposed in this study. The utilization of the Kalman filter and expectation-maximization in conjunction with Rauch-Tung-Striebel (KF-EM-RTS) enables the acquisition and real-time updating of model parameters and the probability density function (pdf) for RUL. This approach also allows for the characterization of parameter uncertainty. Simultaneously, the analytical expression of the RUL pdf can be obtained by the definition based on first hitting time (FHT) and Levy-Khinchin formula. The high-speed computer numerical control (CNC) milling machine cutters dataset from the 2010 IEEE Data Challenge and solid-state RF power amplifier (SSRFPA) degradation data are utilized to validate the proposed model. The results of the experiments demonstrate that the proposed model is capable of delivering accurate RUL estimations.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Parallel simulation based adaptive prediction for equipment remaining useful life
    Ge, Chenglong
    Zhu, Yuanchang
    Di, Yanqiang
    Dong, Zhihua
    JOURNAL OF VIBROENGINEERING, 2018, 20 (05) : 2027 - 2044
  • [32] Adaptive Two-Stage Model for Bearing Remaining Useful Life Prediction Using Gaussian Process Regression With Matched Kernels
    Zheng, Xinyu
    Fan, Wei
    Chen, Chao
    Peng, Zhike
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (04) : 1 - 9
  • [33] Remaining useful life prediction method based on two-phase adaptive drift Wiener process
    Wang, Zhijian
    Jiang, Pengwei
    Chen, Zhongxin
    Li, Yanfeng
    Ren, Weibo
    Dong, Lei
    Du, Wenhua
    Wang, Junyuan
    Zhang, Xiaohong
    Shi, Hui
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 258
  • [34] An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation
    Yu, Wennian
    Shao, Yimin
    Xu, Jin
    Mechefske, Chris
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 217
  • [35] A generalized diffusion model for remaining useful life prediction with uncertainty
    Wen, Bincheng
    Zhao, Xin
    Tang, Xilang
    Xiao, Mingqing
    Zhu, Haizhen
    Li, Jianfeng
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (02)
  • [36] A Remaining Useful Life Prediction Method With Degradation Model Calibration
    Ren, Chao
    Li, Huiqin
    Zhang, Zhengxin
    Si, Xiaosheng
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 172 - 177
  • [37] A novel exponential model for tool remaining useful life prediction
    Sun, Mingjian
    Guo, Kai
    Zhang, Desheng
    Yang, Bin
    Sun, Jie
    Li, Duo
    Huang, Tao
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 73 : 223 - 240
  • [38] Model-based prediction of the remaining useful life of the machines
    Boskoski, P.
    Dolenc, B.
    Musizza, B.
    Juricic, D.
    IFAC PAPERSONLINE, 2017, 50 (01): : 12803 - 12808
  • [39] Prediction of the Remaining Useful Life of Supercapacitors
    Yi, Zhenxiao
    Zhao, Kun
    Sun, Jianrui
    Wang, Licheng
    Wang, Kai
    Ma, Yongzhi
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [40] Remaining useful life prediction of nonlinear degradation process based on EKF
    Wang, Yubing
    Xie, Guo
    Yang, Jing
    Liu, Yu
    Hei, Xinhong
    Gao, Huan
    Wang, Dan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2928 - 2933