Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study

被引:4
|
作者
Veldhuizen, Gregory Patrick [1 ]
Roecken, Christoph [3 ]
Behrens, Hans-Michael [3 ]
Cifci, Didem [1 ,2 ]
Muti, Hannah Sophie [1 ,4 ]
Yoshikawa, Takaki [5 ]
Arai, Tomio [6 ,7 ]
Oshima, Takashi [8 ]
Tan, Patrick [9 ]
Ebert, Matthias P. [10 ,11 ,12 ,13 ]
Pearson, Alexander T. [14 ]
Calderaro, Julien [15 ,16 ]
Grabsch, Heike I. [17 ,18 ]
Kather, Jakob Nikolas [1 ,17 ,19 ,20 ]
机构
[1] Tech Univ Dresden, Else Kroener Fresenius Ctr Digital Hlth, Dresden, Germany
[2] Univ Hosp RWTH Aachen, Dept Med 3, Aachen, Germany
[3] Univ Kiel, Dept Pathol, Kiel, Germany
[4] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dept Visceral Thorac & Vasc Surg, Dresden, Germany
[5] Natl Canc Ctr, Dept Gastr Surg, Tokyo, Japan
[6] Tokyo Metropolitan Geriatr Hosp, Dept Pathol, Tokyo, Japan
[7] Inst Gerontol, Tokyo, Japan
[8] Kanagawa Canc Ctr, Dept Gastrointestinal Surg, Yokohama, Japan
[9] Duke NUS Med Sch, Singapore, Singapore
[10] Heidelberg Univ, Med Fac Mannheim, Dept Med II, Mannheim, Germany
[11] DKFZ Hector Canc Inst, Univ Med Ctr, Mannheim, Germany
[12] Heidelberg Univ, Med Fac Mannheim, Ctr Prevent Med & Digital Hlth, Clin Cooperat Unit Healthy Metab, Mannheim, Germany
[13] Heidelberg Univ, Mannheim Inst Innate Immunosci MI3, Med Fac Mannheim, Mannheim, Germany
[14] Univ Chicago, Hematol Oncol Sect, Dept Med, Chicago, IL USA
[15] Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
[16] Henri Mondor Albert Chenevier Univ Hosp, Assistance Publ Hop Paris, Dept Pathol, Creteil, France
[17] Univ Leeds, Leeds Inst Med Res St Jamess, Pathol & Data Analyt, Leeds, England
[18] Maastricht Univ, GROW Sch Oncol & Reprod, Dept Pathol, Med Ctr, Maastricht, Netherlands
[19] Univ Hosp Dresden, Dept Med 1, Dresden, Germany
[20] Univ Heidelberg Hosp, Natl Ctr Tumor Dis NCT, Med Oncol, Heidelberg, Germany
关键词
Gastric cancer histology; Lauren classification; Deep learning classifier; Prognostic utility; Survival stratification; Hematoxylin; Eosin staining; SURVIVAL; HETEROGENEITY; CARCINOMA;
D O I
10.1007/s10120-023-01398-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction The Lauren classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning ( DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. Objective We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. Methods We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. Results Internal validation using the TCGA GC cohort using five- fold cross-validation achieved a mean AUROC of 0.93 +/- 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Lauren classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist- based Lauren classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian ( overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). Conclusion Our study shows that gastric adenocarcinoma subtyping using pathologist's Lauren classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.
引用
收藏
页码:708 / 720
页数:13
相关论文
共 50 条
  • [21] CT-based radiogenomic analysis dissects intratumor heterogeneity and predicts prognosis of colorectal cancer: a multi-institutional retrospective study
    Min-Er Zhong
    Xin Duan
    Ma-yi-di-li Ni-jia-ti
    Haoning Qi
    Dongwei Xu
    Du Cai
    Chenghang Li
    Zeping Huang
    Qiqi Zhu
    Feng Gao
    Xiaojian Wu
    Journal of Translational Medicine, 20
  • [22] Clinical features, comparative imaging findings, treatment, and outcome in dogs with discospondylitis: A multi-institutional retrospective study
    Van Hoof, Cassie
    Davis, Nicole A.
    Carrera-Justiz, Sheila
    Kahn, Alisha D.
    De Decker, Steven
    Grapes, Nicholas J.
    Beasley, Michaela
    Du, John
    Pancotto, Theresa E.
    Sunol, Anna
    Shinn, Richard
    DeCicco, Barry
    Burkland, Erica
    Cridge, Harry
    JOURNAL OF VETERINARY INTERNAL MEDICINE, 2023, 37 (04) : 1438 - 1446
  • [23] Prognostic Indicators in Stage IV Surgically Treated Gastric Cancer Patients: A Retrospective Multi-Institutional Study
    Biondi, Alberto
    D'Ugo, Domenico
    Cananzi, Ferdinando
    Rausei, Stefano
    Sicoli, Federico
    Santullo, Francesco
    Laurino, Antonio
    Ruspi, Laura
    Belia, Francesco
    Quagliuolo, Vittorio
    Persiani, Roberto
    DIGESTIVE SURGERY, 2019, 36 (04) : 331 - 339
  • [24] Real-World Data of Trastuzumab Deruxtecan for Advanced Gastric Cancer: A Multi-Institutional Retrospective Study
    Matsumoto, Toshihiko
    Yamamura, Shogo
    Ikoma, Tatsuki
    Kurioka, Yusuke
    Doi, Keitaro
    Boku, Shogen
    Shibata, Nobuhiro
    Nagai, Hiroki
    Shimada, Takanobu
    Tsuduki, Takao
    Tsumura, Takehiko
    Takatani, Masahiro
    Yasui, Hisateru
    Satake, Hironaga
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (08)
  • [25] Molecular, Histological, and Clinical Characteristics of Oligodendrogliomas: A Multi-Institutional Retrospective Study
    Dono, Antonio
    Alfaro-Munoz, Kristin
    Yan, Yuanqing
    Lopez-Garcia, Carlos A.
    Soomro, Zaid
    Williford, Garret
    Takayasu, Takeshi
    Robell, Lindsay
    Majd, Nazanin K.
    de Groot, John
    Esquenazi, Yoshua
    Kamiya-Matsuoka, Carlos
    Ballester, Leomar Y.
    NEUROSURGERY, 2022, 90 (05) : 515 - 522
  • [26] A Multi-Institutional Retrospective Study On Clinical IMRT Treatment Delivery Efficiency
    Chang, S.
    Deschesne, K.
    Chen, H.
    Weeks, K.
    Sibata, C.
    Carey, E.
    Levinson, L.
    Potter, L.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [27] MOLECULAR, HISTOLOGIC AND CLINICAL CHARACTERISTICS OF OLIGODENDROGLIOMAS: A MULTI-INSTITUTIONAL RETROSPECTIVE STUDY
    Dono, Antonio
    Alfaro-Munoz, Kristin
    Yan, Yuanqing
    Lopez-Garcia, Carlos
    Soomro, Zaid
    Williford, Garret
    Takayasu, Takeshi
    Robell, Lindsay
    Majd, Nazanin
    de Groot, John
    Esquenazi, Yoshua
    Kamiya-Matsuoka, Carlos
    Ballester, Leomar Y.
    NEURO-ONCOLOGY, 2020, 22 : 168 - 168
  • [28] FDG-PET/CT predicts survival and lung metastasis of hypopharyngeal cancer in a multi-institutional retrospective study
    Suzuki, Hidenori
    Kato, Katsuhiko
    Nishio, Masami
    Tamaki, Tsuneo
    Fujimoto, Yasushi
    Hiramatsu, Mariko
    Hanai, Nobuhiro
    Kodaira, Takeshi
    Itoh, Yoshiyuki
    Naganawa, Shinji
    Sone, Michihiko
    Hasegawa, Yasuhisa
    ANNALS OF NUCLEAR MEDICINE, 2017, 31 (07) : 514 - 520
  • [29] FDG-PET/CT predicts survival and lung metastasis of hypopharyngeal cancer in a multi-institutional retrospective study
    Hidenori Suzuki
    Katsuhiko Kato
    Masami Nishio
    Tsuneo Tamaki
    Yasushi Fujimoto
    Mariko Hiramatsu
    Nobuhiro Hanai
    Takeshi Kodaira
    Yoshiyuki Itoh
    Shinji Naganawa
    Michihiko Sone
    Yasuhisa Hasegawa
    Annals of Nuclear Medicine, 2017, 31 : 514 - 520
  • [30] Outcomes of Gastric Cancer Resection in Octogenarians: A Multi-institutional Study of the US Gastric Cancer Collaborative
    Tran, Thuy B.
    Worhunsky, David J.
    Squires, Malcolm H., III
    Jin, Linda X.
    Spolverato, Gaya
    Votanopoulos, Konstantinos I.
    Schmidt, Carl
    Weber, Sharon
    Bloomston, Mark
    Cho, Clifford S.
    Levine, Edward A.
    Fields, Ryan C.
    Pawlik, Timothy M.
    Maithel, Shishir K.
    Norton, Jeffrey A.
    Poultsides, George A.
    ANNALS OF SURGICAL ONCOLOGY, 2015, 22 (13) : 4371 - 4379