SynAI: an AI-driven cancer drugs synergism prediction platform
被引:0
|
作者:
Yan, Kuan
论文数: 0引用数: 0
h-index: 0
机构:
Crown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R ChinaCrown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R China
Yan, Kuan
[1
]
Jia, Runjun
论文数: 0引用数: 0
h-index: 0
机构:
Crown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R ChinaCrown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R China
Jia, Runjun
[1
]
Guo, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Crown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R China
Crown Biosci, Data Sci & Bioinformat, Room 303,Bldg A6,218 Xinghu St,Ind Pk, Suzhou 215000, Jiangsu, Peoples R ChinaCrown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R China
Guo, Sheng
[1
,2
]
机构:
[1] Crown Biosci, Data Sci & Bioinformat, Suzhou 215000, Jiangsu, Peoples R China
[2] Crown Biosci, Data Sci & Bioinformat, Room 303,Bldg A6,218 Xinghu St,Ind Pk, Suzhou 215000, Jiangsu, Peoples R China
The SynAI solution is a flexible AI-driven drug synergism prediction solution aiming to discover potential therapeutic value of compounds in early stage. Rather than providing a finite choice of drug combination or cell lines, SynAI is capable of predicting potential drug synergism/antagonism using in silico compound SMILE (Simplified Molecular Input Line Entry System) sequences. The AI core of SynAI platform has been trained against cell lines and compound pairs listed by NCI (National Cancer Institute)-Almanac and DurgCombDB datasets. In total, the training data consists of over 1 200 000 in vitro synergism tests on 150 cancer cell lines of different organ origins. Each cell line is tested against over 6000 pairs of FDA (Food and Drug Administration) approved compound combinations. Given one or both candidate compound in SMILE sequence, SynAI is able to predict the potential Bliss score of the combined compound test with the designated cell line without the needs of compound synthetization or structural analysis; thus can significantly reduce the candidate screening costs during the compound development. SynAI platform demonstrates a comparable performance to existing methods but offers more flexibilities for data input.
机构:
Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Singha, Manali
Pu, Limeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Pu, Limeng
Srivastava, Gopal
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Srivastava, Gopal
Ni, Xialong
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Ni, Xialong
Stanfield, Brent A.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Stanfield, Brent A.
Uche, Ifeanyi K.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USA
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Div Biotechnol & Mol Med, Baton Rouge, LA 70803 USA
Louisiana State Univ, Hlth Sci Ctr, Sch Med, New Orleans, LA 70112 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Uche, Ifeanyi K.
Rider, Paul J. F.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USA
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Div Biotechnol & Mol Med, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Rider, Paul J. F.
Kousoulas, Konstantin G.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USA
Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Div Biotechnol & Mol Med, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Kousoulas, Konstantin G.
Ramanujam, J.
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Ramanujam, J.
Brylinski, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
机构:
Univ Southern Denmark, Dept Business & Management, Campusvej 55, DK-5230 Odense M, DenmarkUniv Southern Denmark, Dept Business & Management, Campusvej 55, DK-5230 Odense M, Denmark
Baumann, Oliver
Wu, Brian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Stephen M Ross Sch Business, Strategy Dept, 701 Tappan St, Ann Arbor, MI 48109 USAUniv Southern Denmark, Dept Business & Management, Campusvej 55, DK-5230 Odense M, Denmark