Cross-Domain Sentiment Analysis Based on Feature Projection and Multi-Source Attention in IoT

被引:5
|
作者
Kong, Yeqiu [1 ]
Xu, Zhongwei [1 ]
Mei, Meng [1 ]
机构
[1] Tongji Univ, Sch Elect & Informat Engn, Shanghai 201804, Peoples R China
关键词
social sensor; cross-domain sentiment analysis; multi-source selection; orthogonal projection; attention mechanism; MODEL;
D O I
10.3390/s23167282
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Social media is a real-time social sensor to sense and collect diverse information, which can be combined with sentiment analysis to help IoT sensors provide user-demanded favorable data in smart systems. In the case of insufficient data labels, cross-domain sentiment analysis aims to transfer knowledge from the source domain with rich labels to the target domain that lacks labels. Most domain adaptation sentiment analysis methods achieve transfer learning by reducing the domain differences between the source and target domains, but little attention is paid to the negative transfer problem caused by invalid source domains. To address these problems, this paper proposes a cross-domain sentiment analysis method based on feature projection and multi-source attention (FPMA), which not only alleviates the effect of negative transfer through a multi-source selection strategy but also improves the classification performance in terms of feature representation. Specifically, two feature extractors and a domain discriminator are employed to extract shared and private features through adversarial training. The extracted features are optimized by orthogonal projection to help train the classification in multi-source domains. Finally, each text in the target domain is fed into the trained module. The sentiment tendency is predicted in the weighted form of the attention mechanism based on the classification results from the multi-source domains. The experimental results on two commonly used datasets showed that FPMA outperformed baseline models.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Efficient cross-domain fault diagnosis via distributed multi-source domain deep transfer learning
    Wan, Lanjun
    Ning, Jiaen
    Li, Yuanyuan
    Li, Changyun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [42] Cross-Domain Review Generation for Aspect-Based Sentiment Analysis
    Yu, Jianfei
    Gong, Chenggong
    Xia, Rui
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 4767 - 4777
  • [43] A Centralized-Distributed Transfer Model for Cross-Domain Recommendation Based on Multi-Source Heterogeneous Transfer Learning
    Xu, Ke
    Wang, Ziliang
    Zheng, Wei
    Ma, Yuhao
    Wang, Chenglin
    Jiang, Nengxue
    Cao, Cai
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1269 - 1274
  • [44] Cross-domain sentiment aware word embeddings for review sentiment analysis
    Liu, Jun
    Zheng, Shuang
    Xu, Guangxia
    Lin, Mingwei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (02) : 343 - 354
  • [45] Aspect-Opinion Sentiment Alignment for Cross-Domain Sentiment Analysis
    Ren, Haopeng
    Cai, Yi
    Zeng, Yushi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 13033 - 13034
  • [46] Cross-domain aspect-based sentiment analysis using domain adversarial training
    Knoester, Joris
    Frasincar, Flavius
    Trusca, Maria Mihaela
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (06): : 4047 - 4067
  • [47] Cross-domain sentiment aware word embeddings for review sentiment analysis
    Jun Liu
    Shuang Zheng
    Guangxia Xu
    Mingwei Lin
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 343 - 354
  • [48] Cross-Domain Sentiment Analysis Based on Small in-Domain Fine-Tuning
    Kotelnikova, Anastasia V.
    Vychegzhanin, Sergey V.
    Kotelnikov, Evgeny V.
    IEEE ACCESS, 2023, 11 : 41061 - 41074
  • [49] Cross-domain aspect-based sentiment analysis using domain adversarial training
    Joris Knoester
    Flavius Frasincar
    Maria Mihaela Truşcǎ
    World Wide Web, 2023, 26 : 4047 - 4067
  • [50] Counterfactual Representation Augmentation for Cross-Domain Sentiment Analysis
    Wang, Ke
    Wan, Xiaojun
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 1979 - 1990