An attention-based long short-term memory prediction model for working conditions of copper electrolytic plates

被引:4
|
作者
Zhu, Hongqiu [1 ,2 ]
Peng, Lei [1 ]
Zhou, Can [1 ]
Dai, Yusi [1 ]
Peng, Tianyu [1 ]
机构
[1] Cent South Univ, Sch Automat, Changsha 410083, Peoples R China
[2] Cent South Univ, State Key Lab High Performance Complex Mfg, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
plate states prediction; average gray value; LSTM; attention mechanism; SHORT-CIRCUIT DETECTION; MECHANISM;
D O I
10.1088/1361-6501/acc11f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Copper is an important source of non-ferrous metals, with electrolytic refining being one of the main methods to produce fine copper. In the electrolytic process, plate states seriously affect the output and quality of the copper. Therefore, timely and accurate prediction of the working states of the plates is of great significance to the copper electrolytic refining process. Aiming at the issues associated with traditional plate state detection algorithms of large lag, poor anti-interference ability and low accuracy, a plate state prediction model based on a long short-term memory (LSTM) neural network with an attention mechanism is here proposed in this paper. The average gray values of the plates in infrared imagery are used to characterize the plates' working states. To address the problems of large fluctuation and the large amount of time series data required in such a study, a double-layer LSTM neural network structure is used to improve the efficiency and accuracy of model training. Meanwhile, in view of the periodicity of the time series data and the possible correlation between adjacent data, a unique attention mechanism is proposed to enable the model to learn this correlation between the adjacent data so as to improve the accuracy of the model prediction. The experimental results show that the accuracy of the proposed model for plate state prediction reaches 95.11%. Compared with commonly used prediction algorithms, the plate state prediction model proposed in this paper demonstrates stronger prediction ability.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Temporal Window Attention-Based Window-Dependent Long Short-Term Memory Network for Multivariate Time Series Prediction
    Han, Shuang
    Dong, Hongbin
    ENTROPY, 2023, 25 (01)
  • [42] Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction
    Liu, Yeqi
    Zhang, Qian
    Song, Lihua
    Chen, Yingyi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 165
  • [43] Attention-Based Bi-Directional Long-Short Term Memory Network for Earthquake Prediction
    Banna, Md. Hasan Al
    Ghosh, Tapotosh
    Nahian, Md. Jaber Al
    Taher, Kazi Abu
    Kaiser, M. Shamim
    Mahmud, Mufti
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2021, 9 : 56589 - 56603
  • [44] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Xiong, Shanwei
    Zhou, Li
    Dai, Yiyang
    Ji, Xu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 1 - 14
  • [45] Attention-Based Convolution Skip Bidirectional Long Short-Term Memory Network for Speech Emotion Recognition
    Zhang, Huiyun
    Huang, Heming
    Han, Henry
    IEEE ACCESS, 2021, 9 : 5332 - 5342
  • [46] Multi-Head Attention-Based Long Short-Term Memory for Depression Detection From Speech
    Zhao, Yan
    Liang, Zhenlin
    Du, Jing
    Zhang, Li
    Liu, Chengyu
    Zhao, Li
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [47] Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks
    Canlin Zhang
    Daniel Biś
    Xiuwen Liu
    Zhe He
    BMC Bioinformatics, 20
  • [48] Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks
    Zhang, Canlin
    Bis, Daniel
    Liu, Xiuwen
    He, Zhe
    BMC BIOINFORMATICS, 2019, 20 (Suppl 16)
  • [49] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Shanwei Xiong
    Li Zhou
    Yiyang Dai
    Xu Ji
    Chinese Journal of Chemical Engineering, 2023, 56 (04) : 1 - 14
  • [50] Incrementally trained short-term wind turbine power prediction model based on long short-term memory
    Yu, Qihui
    Liu, Xiaohui
    Tan, Xin
    Qin, Ripeng
    Hao, Xueqing
    Sun, Guoxin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2025,