System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study

被引:3
|
作者
Nakamura, Shinya [1 ]
Akaki, Tatsuo [1 ,2 ]
Nishiwaki, Keiji [1 ]
Nakatani, Midori [1 ]
Kawase, Yuji [1 ]
Takahashi, Yuki [1 ]
Nakanishi, Isao [1 ]
机构
[1] Kindai Univ, Dept Pharmaceut Sci, Computat Drug Designand Discovery, 3-4-1 Higashi Osaka, Osaka 5778502, Japan
[2] Japan Tobacco Inc, Cent Pharmaceut Res Inst, Chem Res Labs, Osaka, Japan
关键词
binding energy in solution; FMO; MP2; PCM; system truncation; CALCULATION PROTOCOL; HIV-1; PROTEASE; X-RAY; ENERGY; COMPLEXES; HEMAGGLUTININ; DATABASE; DESIGN; MODEL; FK506;
D O I
10.1002/jcc.27044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fragment molecular orbital (FMO) method is a fast quantum-mechanical method that divides systems into pieces of fragments and performs ab initio calculations. The system truncation enables further speed improvement. In this article, we systematically study the effects of system truncations on binding affinity calculations obtained with FMO in combination with either the polarizable continuum model (FMO/PCM) or in combination with the Moller-Plesset method (FMO-MP2). We have used five protein complexes with ligands of several charged states. The calculated binding energies of the size variants of the truncated system, including only a restricted number of atoms around the ligand, are compared to the energy obtained from a full system. The result shows that the systems could be truncated to a radius of 8 & ANGS; from neutral ligands within an error of 0.7 kcal/mol, and 12 & ANGS; from charged ligands within an error of 1.1 kcal/mol for calculating the binding energy in solution.
引用
收藏
页码:824 / 831
页数:8
相关论文
共 50 条
  • [41] Theoretical Study on Emission Spectra of Bioluminescent Luciferases by Fragment Molecular Orbital Method
    Tagami, Ayumu
    Ishibashi, Nobuhiro
    Kato, Dai-ichiro
    Taguchi, Naoki
    Mochizuki, Yuji
    Watanabe, Hirofumi
    Ito, Mika
    Tanaka, Shigenori
    JOURNAL OF COMPUTER AIDED CHEMISTRY, 2008, 9 : 47 - 54
  • [42] Geometry Optimization Using the Frozen Domain and Partial Dimer Approaches in the Fragment Molecular Orbital Method: Implementation, Benchmark, and Applications to Protein Ligand-Binding Sites
    Okuwaki, Koji
    Watanabe, Naoki
    Kato, Koichiro
    Watanabe, Chiduru
    Nakayama, Naofumi
    Kato, Akifumi
    Mochizuki, Yuji
    Nakano, Tatsuya
    Honma, Teruki
    Fukuzawa, Kaori
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (24) : 9449 - 9458
  • [43] Fragment-to-lead and peptide mimetic design using Fragment Molecular Orbital QM calculations
    Law, Richard J.
    Ichihara, Osamu
    Mazanetz, Michael
    Szeto, Michelle
    Pal, Sandeep
    Whittaker, Mark
    Hallett, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [44] Fragmentation of disulfide bonds in the fragment molecular orbital method
    Fedorov, Dmitri G.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2024, 1241
  • [45] The fragment molecular orbital method and understanding monomer polarization
    Churchill, Cassandra D. M.
    CHEMICAL PHYSICS LETTERS, 2012, 554 : 185 - 189
  • [46] Analytic Gradients for the Effective Fragment Molecular Orbital Method
    Bertoni, Colleen
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) : 4743 - 4767
  • [47] Applications of the Fragment Molecular Orbital Method in Drug Discovery
    Ishikawa, Takeshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (01): : 121 - 130
  • [48] Fully Integrated Effective Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Steinmann, Casper
    Jensen, Jan H.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (05) : 2235 - 2249
  • [49] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646
  • [50] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170