Ultra-short-term wind power probabilistic forecasting based on an evolutionary non-crossing multi-output quantile regression deep neural network

被引:16
|
作者
Zhu, Jianhua [1 ,2 ]
He, Yaoyao [1 ,3 ]
Yang, Xiaodong [4 ]
Yang, Shanlin [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei, Anhui, Peoples R China
[3] Hefei Univ Technol, Anhui Key Lab Philosophy & Social Sci Energy & Env, Hefei 230009, Peoples R China
[4] Hefei Univ Technol, Anhui Prov Key Lab Renewable Energy Utilizat & Ene, Hefei, Peoples R China
关键词
Deep neural network; Quantile regression; Chaotic particle swarm optimization; Wind power probabilistic forecasting; LOAD; DENSITY; OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.enconman.2024.118062
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ultra -short-term wind power probabilistic forecasting is of significance for stable power grid operation; however, it is still challenging due to the inherent nonlinearity and uncertainty. Most state-of-the-art methods have focused on achieving quantile prediction using a combination of linear quantile regression and nonlinear complex deep neural networks. Yet, these methods struggle with several dilemmas. Quantile regression deep neural networks require a complete training once for each quantile. The multi -training mode and complex structure of quantile regression deep neural network can lead to extremely high computational complexity. Most of the training of quantile regression deep neural networks are guided by the loss of each quantile, and the weights are adjusted by gradient descent in which the gradient explosion and quantile crossover may be encountered. Therefore, this paper proposes a non -crossing multi -output quantile regression deep neural network optimized by chaotic particle swarm optimization. It designs a multi -output deep neural network to output all quantile estimations simultaneously through one training, effectively solving the structural complexity problem of traditional quantile regression deep neural networks. Since quantile regression produces a non -differentiable loss function which significantly hinders model training, the proposed neural network is trained by chaotic particle swarm optimization. It not only achieves the effect of optimizing all quantile losses simultaneously, but also can significantly alleviate the dilemma of training in traditional neural network weight optimization. In addition, several non -crossing constraints are designed for avoiding quantile crossover. The proposed model is trained and tested on two real -world wind power case studies. The experiment results show that the proposed model shows superiority in performance criteria, training speed, and avoiding quantile crossover.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Ultra-Short-Term Wind Speed Forecasting for Wind Power Based on Gated Recurrent Unit
    Syu, Yu-Dian
    Wang, Jen-Cheng
    Chou, Cheng-Ying
    Lin, Ming-Jhou
    Liang, Wei-Chih
    Wu, Li-Cheng
    Jiang, Joe-Air
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [32] An ultra-short-term wind power forecasting approach based on wind speed decomposition, wind direction and Elman Neural Networks
    Su, Yongxin
    Wang, Shaolong
    Xiao, Zhe
    Tan, Mao
    Wang, Mengjiao
    2018 2ND IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2018, : 401 - 406
  • [33] Research on a Deep Ensemble Learning Model for the Ultra-Short-Term Probabilistic Prediction of Wind Power
    Zhou, Yan
    Wei, Fuzhen
    Kuang, Kaiyang
    Mahfoud, Rabea Jamil
    ELECTRONICS, 2024, 13 (03)
  • [34] DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting
    Zhong, Mingwei
    Xu, Cancheng
    Xian, Zikang
    He, Guanglin
    Zhai, Yanpeng
    Zhou, Yongwang
    Fan, Jingmin
    ENERGY, 2024, 286
  • [35] Ultra-Short-Term Wind Power Forecasting Based on the MSADBO-LSTM Model
    Zhao, Ziquan
    Bai, Jing
    ENERGIES, 2024, 17 (22)
  • [36] Ultra-Short-Term Wind Power Forecasting Based on Fluctuation Pattern Clustering and Prediction
    Fan, Huijing
    Zhen, Zhao
    Liu, Jiaming
    Wang, Fei
    Mi, Zengqiang
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 918 - 923
  • [37] Ultra-Short-Term Wind Power Forecasting Based on DT-DSCTransformer Model
    Gao, Yanlong
    Xing, Feng
    Kang, Lipeng
    Zhang, Mingming
    Qin, Caiyan
    IEEE ACCESS, 2025, 13 : 22919 - 22930
  • [38] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [39] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [40] IDHNet: Ultra-Short-Term Wind Power Forecasting With IVMD-DCInformer-HSSA Network
    Li, Wei
    Gao, Lu
    Zhang, Fei
    Ren, XiaoYing
    Qin, Ling
    ENERGY SCIENCE & ENGINEERING, 2024,