Ultra-short-term wind power probabilistic forecasting based on an evolutionary non-crossing multi-output quantile regression deep neural network

被引:16
|
作者
Zhu, Jianhua [1 ,2 ]
He, Yaoyao [1 ,3 ]
Yang, Xiaodong [4 ]
Yang, Shanlin [1 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei, Anhui, Peoples R China
[3] Hefei Univ Technol, Anhui Key Lab Philosophy & Social Sci Energy & Env, Hefei 230009, Peoples R China
[4] Hefei Univ Technol, Anhui Prov Key Lab Renewable Energy Utilizat & Ene, Hefei, Peoples R China
关键词
Deep neural network; Quantile regression; Chaotic particle swarm optimization; Wind power probabilistic forecasting; LOAD; DENSITY; OPTIMIZATION; ALGORITHM;
D O I
10.1016/j.enconman.2024.118062
中图分类号
O414.1 [热力学];
学科分类号
摘要
Ultra -short-term wind power probabilistic forecasting is of significance for stable power grid operation; however, it is still challenging due to the inherent nonlinearity and uncertainty. Most state-of-the-art methods have focused on achieving quantile prediction using a combination of linear quantile regression and nonlinear complex deep neural networks. Yet, these methods struggle with several dilemmas. Quantile regression deep neural networks require a complete training once for each quantile. The multi -training mode and complex structure of quantile regression deep neural network can lead to extremely high computational complexity. Most of the training of quantile regression deep neural networks are guided by the loss of each quantile, and the weights are adjusted by gradient descent in which the gradient explosion and quantile crossover may be encountered. Therefore, this paper proposes a non -crossing multi -output quantile regression deep neural network optimized by chaotic particle swarm optimization. It designs a multi -output deep neural network to output all quantile estimations simultaneously through one training, effectively solving the structural complexity problem of traditional quantile regression deep neural networks. Since quantile regression produces a non -differentiable loss function which significantly hinders model training, the proposed neural network is trained by chaotic particle swarm optimization. It not only achieves the effect of optimizing all quantile losses simultaneously, but also can significantly alleviate the dilemma of training in traditional neural network weight optimization. In addition, several non -crossing constraints are designed for avoiding quantile crossover. The proposed model is trained and tested on two real -world wind power case studies. The experiment results show that the proposed model shows superiority in performance criteria, training speed, and avoiding quantile crossover.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Ultra-short-term wind power probabilistic forecasting based on an evolutionary non-crossing multi-output quantile regression deep neural network
    Zhu, Jianhua
    He, Yaoyao
    Yang, Xiaodong
    Yang, Shanlin
    Energy Conversion and Management, 2024, 301
  • [2] Ultra-short-term probabilistic forecasting of offshore wind power based on spectral attention and non-crossing joint quantile regression
    Su, Xiangjing
    Zhu, Minxuan
    Yu, Haibo
    Li, Chaojie
    Fu, Yang
    Mi, Yang
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2024, 52 (21): : 103 - 116
  • [3] Ensemble Deep Learning-Based Non-Crossing Quantile Regression for Nonparametric Probabilistic Forecasting of Wind Power Generation
    Cui, Wenkang
    Wan, Can
    Song, Yonghua
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (04) : 3163 - 3178
  • [4] Ultra-Short-Term Wind Power Forecasting Based on Deep Belief Network
    Wang, Sen
    Sun, Yonghui
    Zhai, Suwei
    Hou, Dongchen
    Wang, Peng
    Wu, Xiaopeng
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7479 - 7483
  • [5] Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network
    Lu, Shixiang
    Xu, Qifa
    Jiang, Cuixia
    Liu, Yezheng
    Kusiak, Andrew
    ENERGY, 2022, 242
  • [6] Enhancing ultra-short-term wind power forecasting using the Copula quantile regression method
    Guo, Junhong
    Wang, Xiaoxuan
    Wang, Yuexin
    Li, Wei
    Ding, Yi
    Jia, Hongtao
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (10): : 1921 - 1929
  • [7] Ultra-short-term Probabilistic Forecasting of Wind Power Based on Temporal Mixture Density Network
    Dong X.
    Sun Y.
    Pu T.
    Wang X.
    Li Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (14): : 93 - 100
  • [8] Deep neural networks for ultra-short-term wind forecasting
    Dalto, Mladen
    Matusko, Jadranko
    Vasak, Mario
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 1657 - 1663
  • [9] Ultra-short-term Wind Power Forecasting Based on Switching Output Mechanism
    Yang M.
    Xu C.
    Wang K.
    Gaodianya Jishu/High Voltage Engineering, 2022, 48 (02): : 420 - 429
  • [10] Probabilistic prediction of wind farm power generation using non-crossing quantile regression
    Huang, Yu
    Li, Xuxin
    Li, Dui
    Zhang, Zongshi
    Yin, Tangwen
    Chen, Hongtian
    CONTROL ENGINEERING PRACTICE, 2025, 156