ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE E5

被引:0
|
作者
Guler, Erhan [1 ]
机构
[1] Bartın Univ, Fac Sci, Dept Math, Kutlubey Campus, TR-74100 Bartin, Turkiye
来源
HONAM MATHEMATICAL JOURNAL | 2023年 / 45卷 / 04期
关键词
Euclidean five space; Lorentzian inner product; Euclidean quadruple vector product; rotational hypersurface; Gauss map; curvature; LAPLACE-BELTRAMI OPERATOR; SURFACES;
D O I
10.5831/HMJ.2023.45.4.585
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space E5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curva-tures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal increment x =Ax, where A is the 5 x 5 matrix in E5.
引用
收藏
页码:585 / 597
页数:13
相关论文
共 50 条