Triangles in r-wise t-intersecting families

被引:0
|
作者
Liao, Jiaqi [1 ]
Cao, Mengyu [2 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Renmin Univ China, Inst Math Sci, Beijing 100086, Peoples R China
基金
中国国家自然科学基金;
关键词
r-wise t-intersecting family; Triangle; Generalized Turan type problem; SYSTEMS; THEOREMS;
D O I
10.1016/j.ejc.2023.103731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t, r, k and n be positive integers and F a family of k-subsets of an n-set V. The family F is r-wise t-intersecting if for any F-1, . . . , F-r is an element of F, we have |boolean AND(r)(i=1) F-i| >= t. An r-wise t-intersecting family of r + 1 sets {T-1, . . . , Tr+1} is called an (r + 1, t)-triangle if |T-1 boolean AND center dot center dot center dot boolean AND Tr+1| <= t - 1. In this paper, we prove that if n >= n(0)(r, t, k), then the r-wise t-intersecting family F subset of (([n])(k)) containing the most (r + 1, t)-triangles is isomorphic to {F is an element of(([n])(k)) : |F boolean AND [r + t]| >= r + t - 1}. This can also be regarded k as a generalized Turan type result. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Stabilities for Non-Uniform t-Intersecting Families
    Li, Yongtao
    Wu, Biao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [32] Non-trivial t-intersecting separated families
    Frankl, Peter
    Liu, Erica L. L.
    Wang, Jian
    Yang, Zhe
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 124 - 137
  • [33] A GENERALIZATION OF THE KATONA THEOREM FOR CROSS T-INTERSECTING FAMILIES
    MATSUMOTO, M
    TOKUSHIGE, N
    GRAPHS AND COMBINATORICS, 1989, 5 (02) : 159 - 171
  • [34] Triangles in intersecting families
    Nagy, Daniel T.
    Patkos, Balazs
    MATHEMATIKA, 2022, 68 (04) : 1073 - 1079
  • [35] The maximum sum of the sizes of cross t-intersecting separated families
    Liu, Erica L. L.
    AIMS MATHEMATICS, 2023, 8 (12): : 30910 - 30921
  • [36] Families of vector spaces with r-wise L-intersections
    Xiao, Jimeng
    Liu, Jiuqiang
    Zhang, Shenggui
    DISCRETE MATHEMATICS, 2018, 341 (04) : 1041 - 1054
  • [37] AK-type stability theorems on cross t-intersecting families
    Lee, Sang June
    Siggers, Mark
    Tokushige, Norihide
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 82
  • [38] Non-trivial t-intersecting families for symplectic polar spaces
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [39] Large non-trivial t-intersecting families of signed sets
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 32 - 48
  • [40] Towards extending the Ahlswede Khachatrian theorem to cross t-intersecting families
    Lee, Sang June
    Siggers, Mark
    Tokushige, Norihide
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 627 - 645