Tilting modules in the mixed case;
Diagrammatic algebra;
Temperley-Lieb algebras and categories;
Fusion rules;
Braided structures;
TENSOR-PRODUCTS;
RINGEL DUALITY;
ALGEBRAS;
REPRESENTATIONS;
CATEGORIES;
ROOTS;
D O I:
10.1007/s00029-023-00835-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Using the non-semisimple Temperley-Lieb calculus, we study the additive and monoidal structure of the category of tilting modules for SL2 in the mixed case. This simultaneously generalizes the semisimple situation, the case of the complex quantum group at a root of unity, and the algebraic group case in positive characteristic. We describe character formulas and give a presentation of the category of tilting modules as an additive category via a quiver with relations. Turning to the monoidal structure, we describe fusion rules and obtain an explicit recursive description of the appropriate analog of Jones-Wenzl projectors.
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, Univ Lyon, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, Univ Lyon, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Iohara, K.
Lehrer, G., I
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, AustraliaUniv Claude Bernard Lyon 1, Inst Camille Jordan, Univ Lyon, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Lehrer, G., I
Zhang, R. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, AustraliaUniv Claude Bernard Lyon 1, Inst Camille Jordan, Univ Lyon, CNRS UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France