SL2 tilting modules in the mixed case

被引:0
|
作者
Sutton, Louise [1 ]
Tubbenhauer, Daniel [2 ]
Wedrich, Paul [3 ]
Zhu, Jieru [1 ]
机构
[1] Okinawa Inst Sci & Technol, 1919 1 Tancha, Onna Son, Okinawa 9040495, Japan
[2] Univ Sydney, Sch Math & Stat, F07 Carslaw Bldg,Off Carslaw 827, Sydney, NSW 2006, Australia
[3] Univ Hamburg, Dept Math, Bundesstr 55, D-20146 Hamburg, Germany
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 03期
关键词
Tilting modules in the mixed case; Diagrammatic algebra; Temperley-Lieb algebras and categories; Fusion rules; Braided structures; TENSOR-PRODUCTS; RINGEL DUALITY; ALGEBRAS; REPRESENTATIONS; CATEGORIES; ROOTS;
D O I
10.1007/s00029-023-00835-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the non-semisimple Temperley-Lieb calculus, we study the additive and monoidal structure of the category of tilting modules for SL2 in the mixed case. This simultaneously generalizes the semisimple situation, the case of the complex quantum group at a root of unity, and the algebraic group case in positive characteristic. We describe character formulas and give a presentation of the category of tilting modules as an additive category via a quiver with relations. Turning to the monoidal structure, we describe fusion rules and obtain an explicit recursive description of the appropriate analog of Jones-Wenzl projectors.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] On certain tilting modules for SL2
    Martin, Samuel
    JOURNAL OF ALGEBRA, 2018, 506 : 397 - 408
  • [2] QUIVERS FOR SL2 TILTING MODULES
    Tubbenhauer, Daniel
    Wedrich, Paul
    REPRESENTATION THEORY, 2021, 25 : 440 - 480
  • [3] THE CENTER OF SL2 TILTING MODULES
    Tubbenhauer, Daniel
    Wedrich, Paul
    GLASGOW MATHEMATICAL JOURNAL, 2022, 64 (01) : 165 - 184
  • [4] Character formulae and a realization of tilting modules for sl2[t]
    Bennett, Matthew
    Chari, Vyjayanthi
    JOURNAL OF ALGEBRA, 2015, 441 : 216 - 242
  • [5] MODULES OVER UQ(SL2)
    SUTER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) : 359 - 393
  • [6] Whittaker modules for Uq (sl2)
    Ondrus, M
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 192 - 213
  • [7] Higher extensions between modules for SL2
    Parker, Alison E.
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 381 - 405
  • [8] Uqres(sl2)-invariant forms on their modules
    Yang, SL
    Wang, DG
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) : 1685 - 1703
  • [9] On 2-Verma modules for quantum sl2
    Naisse, Gregoire
    Vaz, Pedro
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3763 - 3821
  • [10] sl2-Harish-Chandra modules for sl2?L(4)
    Mazorchuk, Volodymyr
    Mrden, Rafael
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)