The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach

被引:3
|
作者
Montolio, Alberto [1 ,2 ]
Cegonino, Jose [1 ,2 ]
Garcia-Martin, Elena [3 ,4 ]
del Palomar, Amaya Perez [1 ,2 ]
机构
[1] Univ Zaragoza, Aragon Inst Engn Res I3A, Biomat Grp, Zaragoza, Spain
[2] Univ Zaragoza, Mech Engn Dept, Zaragoza, Spain
[3] Miguel Servet Univ Hosp, Ophthalmol Dept, Zaragoza, Spain
[4] Aragon Inst Hlth Res IIS Aragon, GIMSO Res & Innovat Grp, Zaragoza, Spain
关键词
multiple sclerosis; deep learning; optical coherence tomography; retinal ganglion cell layer; NERVE-FIBER LAYER; OPTICAL COHERENCE TOMOGRAPHY; DISABILITY; THICKNESS; SEGMENTATION; NETWORKS; NEURITIS; ATROPHY;
D O I
10.1111/aos.15722
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS.Methods: This paper combines a cross-sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10-year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier.Results: For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs.Conclusion: We present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non-invasive, low-cost, easy-to-implement and effective method.
引用
收藏
页码:e272 / e284
页数:13
相关论文
共 50 条
  • [41] Retinal Vascular Morphology Is Associated with Both Ganglion Cell Layer and T2 Lesion Volumes in Multiple Sclerosis
    Kimbrough, Dorlan
    Cavallari, Michele
    Guttmann, Charles
    Chitnis, Tanuja
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 122 - 123
  • [42] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [43] Role for OCT in detecting hemi-macular ganglion cell layer thinning in patients with multiple sclerosis and related demyelinating diseases
    Ilardi, Marissa
    Nolan-Kenney, Rachel
    Fatterpekar, Girish
    Hasanaj, Lisena
    Serrano, Liliana
    Joseph, Binu
    Wu, Shirley
    Rucker, Janet C.
    Balcer, Laura J.
    Galetta, Steven L.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2020, 419
  • [44] Retinal layer thinning rate as a biomarker predicting treatment response in relapsing multiple sclerosis
    Bsteh, G.
    Hegen, H.
    Berek, K.
    Altmann, P.
    Wurth, S.
    Auer, M.
    Zinganell, A.
    Di Pauli, F.
    Rommer, P.
    Leutmezer, F.
    Deisenhammer, F.
    Berger, T.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 189 - 189
  • [45] Retinal layer thinning rate as a biomarker predicting treatment response in relapsing multiple sclerosis
    Bsteh, Gabriel
    Hegen, Harald
    Berek, Klaus
    Altmann, Patrick
    Zinganell, Anne
    Wurth, Sebastian
    Auer, Michael
    Di Pauli, Franziska
    Teuchner, Barbara
    Pemp, Berthold
    Deisenhammer, Florian
    Berger, Thomas
    NEUROLOGY, 2020, 94 (15)
  • [46] Retinal layer thinning as a biomarker of long-term disability progression in multiple sclerosis
    Berek, Klaus
    Hegen, Harald
    Hocher, Jakob
    Auer, Michael
    Di Pauli, Franziska
    Krajnc, Nik
    Angermann, Reinhard
    Barket, Robert
    Zinganell, Anne
    Riedl, Katharina
    Deisenhammer, Florian
    Berger, Thomas
    Bsteh, Gabriel
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (12) : 1871 - 1880
  • [47] Reproducibility of macular retinal nerve fiber layer and ganglion cell layer thickness measurements in a healthy pediatric population
    Jimenez Santos, Maria
    Acebal Montero, Alejandra
    Saenz-Frances San Baldomero, Federico
    Valverde-Megias, Alcia
    Gomez de Liano, Rosario
    EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2021, 31 (04) : 2087 - 2094
  • [48] Evaluation of Retinal Nerve Fiber Layer and Macular Ganglion Cell Layer Thickness in Relation to Optic Disc Size
    Storp, Jens Julian
    Storp, Nils Hendrik
    Danzer, Moritz Fabian
    Eter, Nicole
    Biermann, Julia
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (07)
  • [49] Deep Learning for The Automatic Diagnosis and Detection of Multiple Retinal Abnormalities
    Gian, Michelle K. S.
    Raman, Valliappan
    Then, Patrick H. H.
    JOURNAL OF INTEGRATED DESIGN & PROCESS SCIENCE, 2019, 23 (03) : 5 - 41
  • [50] Macular ganglion cell–inner plexiform layer thickness for detection of early retinal toxicity of hydroxychloroquine
    Emrah Kan
    Konuralp Yakar
    Mehmet Derya Demirag
    Mustafa Gok
    International Ophthalmology, 2018, 38 : 1635 - 1640