共 50 条
Perpendicular Alignment of Covalent Organic Framework (COF) Pore Channels by Solvent Vapor Annealing
被引:51
|作者:
Yin, Congcong
[1
,2
]
Liu, Ming
[1
]
Zhang, Zhe
[1
]
Wei, Mingjie
[1
]
Shi, Xiansong
[1
]
Zhang, Yatao
[3
]
Wang, Jingtao
[3
]
Wang, Yong
[1
,2
]
机构:
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Jiangsu 211816, Peoples R China
[2] Southeast Univ, Sch Energy & Environm, Nanjing 210096, Peoples R China
[3] Zhengzhou Univ, Sch Chem Engn, Henan 450001, Peoples R China
基金:
中国国家自然科学基金;
关键词:
BLOCK-COPOLYMERS;
MEMBRANES;
NANOPORES;
D O I:
10.1021/jacs.3c03198
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Covalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment. COF thin films are first synthesized to have flexible N-H bonds in their skeletons, thus having structural mobility to enable molecular rearrangement. A solvent with low relative permittivity and a conjugated structure is then identified to have a strong affinity toward the COFs, allowing its vapor to easily penetrate into the COF interlayers. The solvent vapor weakens the pi-pi interaction and consequently allows the COF monolayers to dissociate. The COF monolayers undergo a reorientation process that converts from random stacking into the face-on stacking fashion, in which the through COF pores are perpendicularly aligned. The aligned COF film exhibits high separation precision toward ions featuring a size difference down to 2 angstrom, which is 8 times higher than that of the anisotropically oriented counterpart. This work opens up an avenue for COF orientation regulation by solvent vapor annealing and reveals the essential role of the perpendicular alignment of COF pore channels to enable precision separations.
引用
收藏
页码:11431 / 11439
页数:9
相关论文