Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq

被引:4
|
作者
Raevskiy, Mikhail [1 ,2 ]
Yanvarev, Vladislav [1 ]
Jung, Sascha [3 ,4 ]
Del Sol, Antonio [3 ,4 ]
Medvedeva, Yulia A. [1 ,5 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Moscow 141701, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Ctr Cooperat Res Biosci, Computat Biol Lab, Derio 48160, Bizkaia, Spain
[4] Univ Luxembourg, Ctr Syst Biomed, L-4365 Luxembourg, Luxembourg
[5] Russian Acad Sci, Inst Bioengn, Res Ctr Biotechnol, Moscow 119071, Russia
[6] Natl Med Res Ctr Endocrinol, Moscow 117036, Russia
关键词
single cell RNA-seq; imputation; single cell ATAC-seq; EXPRESSION; ENHANCERS;
D O I
10.3390/ijms24076229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages single-cell ATAC-seq data as an additional source of information about gene activity to reduce the number of dropouts. We demonstrate that Epi-Impute outperforms existing methods, especially for very sparse single-cell RNA-seq data sets, significantly reducing imputation error. At the same time, Epi-Impute accurately captures the primary distribution of gene expression across cells while preserving the gene-gene and cell-cell relationship in the data. Moreover, Epi-Impute allows for the discovery of functionally relevant cell clusters as a result of the increased resolution of scRNA-seq data due to imputation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Single-cell ATAC-seq signal extraction and enhancement with SCATE
    Ji, Zhicheng
    Zhou, Weiqiang
    Hou, Wenpin
    Ji, Hongkai
    GENOME BIOLOGY, 2020, 21 (01)
  • [42] GE-Impute: graph embedding-based imputation for single-cell RNA-seq data
    Wu, Xiaobin
    Zhou, Yuan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [43] AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
    Divyanshu Talwar
    Aanchal Mongia
    Debarka Sengupta
    Angshul Majumdar
    Scientific Reports, 8
  • [44] Zero-preserving imputation of single-cell RNA-seq data
    George C. Linderman
    Jun Zhao
    Manolis Roulis
    Piotr Bielecki
    Richard A. Flavell
    Boaz Nadler
    Yuval Kluger
    Nature Communications, 13
  • [45] Zero-preserving imputation of single-cell RNA-seq data
    Linderman, George C.
    Zhao, Jun
    Roulis, Manolis
    Bielecki, Piotr
    Flavell, Richard A.
    Nadler, Boaz
    Kluger, Yuval
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] AutoImpute: Autoencoder based imputation of single-cell RNA-seq data
    Talwar, Divyanshu
    Mongia, Aanchal
    Sengupta, Debarka
    Majumdar, Angshul
    SCIENTIFIC REPORTS, 2018, 8
  • [47] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mesenchymal Stem/Stromal Cells Derived from Human Placenta
    Li, Jinlu
    Wang, Quanlei
    An, Yanru
    Chen, Xiaoyan
    Xing, Yanan
    Deng, Qiuting
    Li, Zelong
    Wang, Shengpeng
    Dai, Xi
    Liang, Ning
    Hou, Yong
    Yang, Huanming
    Shang, Zhouchun
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
  • [48] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [49] Identifying oncogenic enhancer elements in TNBC of the Basal-like subtype using single-cell ATAC-seq and RNA-seq
    Regner, Matthew J.
    Thennavan, Aatish
    Wisniewska, Kamila
    Garcia-Recio, Susana
    Mendez-Giraldez, Raul
    Spanheimer, Philip
    Perou, Charles M.
    Franco, Hector L.
    CANCER RESEARCH, 2023, 83 (05)
  • [50] Flexible and high-throughput microwell-based single-cell capture for multiomic ATAC-seq and RNA-seq profiling
    Nguyen, Rosary
    Huang, Hongduan
    Bao, Quyen
    Narayan, Punya
    Song, Hye-Won
    Hatami, Elham
    Zhang, Zhiqi
    McCarthy, Thomas
    Kim, Youngsook
    Li, Ruifang
    Gordon, Chelsea
    Wang, Larry
    Ayer, Aruna
    CANCER RESEARCH, 2024, 84 (06)