We propose a covariance ratio measure for symmetry or asymmetry of a probability density function. This measure is constructed by the ratio of the covariance connected with the density function and the distribution function. We first propose a non parametric moment-based estimator of the covariance ratio measure and study its asymptotic results. Next, we consider statistical inference of the covariance ratio measure by using the empirical likelihood method. The empirical likelihood statistic is shown to be asymptotically a standard chi-squared distribution. Last, we study the covariance ratio measure when the random variable is unobserved under the multiplicative distortion measurement errors setting. The density function and the distribution function of the unobserved variable are estimated by using four calibrated variables. Appealing to these estimators, the calibrated covariance ratio measures are proposed and further shown to be asymptotically efficient as if there are no multiplicative distortion effects. We conduct Monte Carlo simulation experiments to examine the performance of the proposed estimators and test procedures. These methods are applied to analyze two real datasets for illustration.
机构:
Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R China
Zhang, Jun
Lin, Bingqing
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R China
Lin, Bingqing
Feng, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Econ, Dept Stat, MOE Key Lab Econometr, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen 361005, Fujian, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen 518060, Peoples R China
机构:
Sorbonne Univ, Univ Pierre & Marie Curie, Lab Probabilite Stat & Modelisat, Fac Math, 4 Pl Jussieu, F-75252 Paris 05, FranceSorbonne Univ, Univ Pierre & Marie Curie, Lab Probabilite Stat & Modelisat, Fac Math, 4 Pl Jussieu, F-75252 Paris 05, France
Broniatowski, Michel
Jureckova, Jana
论文数: 0引用数: 0
h-index: 0
机构:
Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague 18208 8, Czech Republic
Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech RepublicSorbonne Univ, Univ Pierre & Marie Curie, Lab Probabilite Stat & Modelisat, Fac Math, 4 Pl Jussieu, F-75252 Paris 05, France
Jureckova, Jana
Kalina, Jan
论文数: 0引用数: 0
h-index: 0
机构:
Czech Acad Sci, Inst Comp Sci, Pod Vodarenskou Vezi 2, Prague 18207 8, Czech RepublicSorbonne Univ, Univ Pierre & Marie Curie, Lab Probabilite Stat & Modelisat, Fac Math, 4 Pl Jussieu, F-75252 Paris 05, France