Wide-velocity range high-energy plasma sprayed yttria-stabilized zirconia thermal barrier coating - Part II: Structural defects and thermal-bonding properties

被引:7
|
作者
Wang, Y. [1 ]
Bai, Y. [1 ]
Liu, G. H. [2 ]
Sun, J.
Zheng, Q. S. [1 ]
Yu, F. L. [3 ]
Liu, M. [4 ]
Wang, H. D. [4 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] China United Gas Turbine Technol Co Ltd, Beijing 100000, Peoples R China
[3] Xian Aeronaut Univ, Sch Mat Engn, Xian 710077, Peoples R China
[4] Army Acad Armored Forces, Natl Key Lab Remfg, Beijing 100072, Peoples R China
来源
SURFACE & COATINGS TECHNOLOGY | 2024年 / 476卷
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; Defects; Bonding strength; Thermal conductivity; Anti-sintering design; IN-FLIGHT PARTICLES; INSULATION CAPABILITY; SPLAT-INTERFACE; CONDUCTIVITY; YSZ; MICROSTRUCTURE; BEHAVIOR; TEMPERATURE;
D O I
10.1016/j.surfcoat.2023.130203
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Traditional porous plasma-sprayed YSZ thermal barrier coatings (TBCs) present an inverse relationship between bonding strength and thermal insulation properties; achieving the synergistic improvement of both properties is a huge challenge for current plasma spraying methods. To address this challenge, in this work, we focus on regulating the structural defects of the TBCs by modifying the melting and in-flight behavior of plasma-spray particles. Dual-modal subsonic and novel multi-modal supersonic coatings were fabricated. The results suggested that the multi-modal structure of the supersonic coating with a defect content of approximately 13 % exhibited the highest tensile bonding strength (similar to 74 MPa) and the lowest thermal conductivity (0.75-0.80 W center dot m(-1)center dot K-1 from 200 degrees C to 1000 degrees C). The high bonding strength was attributed to the epitaxial growth and mechanical interlocking of submicron-/nano-grains, whereas the low thermal conductivity came from the coexistence of an overlapping distribution of submicron-sized splats, discontinuous interfaces, and high-density crystal defects. Due to the competitive sintering of finer unmelted particles and recrystallization zones, the supersonic coating exhibited superior thermal insulation. Therefore, supersonic coating is considered as good candidates for high-performance TBCs.
引用
收藏
页数:14
相关论文
共 47 条
  • [21] Thermal cycling behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coating with La0.8Ba0.2TiO3-δ top layer
    Fang, Yongchao
    Cui, Xiufang
    Yan, Chao
    Chen, Zhuo
    Jing, Yongzhi
    Wen, Xin
    Jin, Guo
    Tian, Haoliang
    CERAMICS INTERNATIONAL, 2022, 48 (05) : 6185 - 6198
  • [22] Machine Learning-Assisted Design of Yttria-Stabilized Zirconia Thermal Barrier Coatings with High Bonding Strength
    Xu, Pengcheng
    Chen, Can
    Chen, Shuizhou
    Lu, Wencong
    Qian, Quan
    Zeng, Yi
    ACS OMEGA, 2022, 7 (24): : 21052 - 21061
  • [23] Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)
    Li, Wenshuai
    Zhao, Huayu
    Zhong, Xinghua
    Wang, Liang
    Tao, Shunyan
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2014, 23 (06) : 975 - 983
  • [24] Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying
    Rauf, A.
    Yu, Q.
    Jin, L.
    Zhou, C.
    SCRIPTA MATERIALIA, 2012, 66 (02) : 109 - 112
  • [25] Air Plasma-Sprayed Yttria and Yttria-Stabilized Zirconia Thermal Barrier Coatings Subjected to Calcium-Magnesium-Alumino-Silicate (CMAS)
    Wenshuai Li
    Huayu Zhao
    Xinghua Zhong
    Liang Wang
    Shunyan Tao
    Journal of Thermal Spray Technology, 2014, 23 : 975 - 983
  • [26] Microstructure and thermal properties of nanostructured gadolinia doped yttria-stabilized zirconia thermal barrier coatings produced by air plasma spraying
    Wang, Yixiong
    Zhou, Chungen
    CERAMICS INTERNATIONAL, 2016, 42 (11) : 13047 - 13052
  • [27] High-temperature stability of yttria-stabilized zirconia thermal barrier coating on niobium alloy-C-103
    Panwar, S. S.
    Patro, T. Umasankar
    Balasubramanian, K.
    Venkataraman, B.
    BULLETIN OF MATERIALS SCIENCE, 2016, 39 (01) : 321 - 329
  • [28] High-temperature stability of yttria-stabilized zirconia thermal barrier coating on niobium alloy—C-103
    S S PANWAR
    T UMASANKAR PATRO
    K BALASUBRAMANIAN
    B VENKATARAMAN
    Bulletin of Materials Science, 2016, 39 : 321 - 329
  • [29] Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash
    Xia, J.
    Yang, L.
    Wu, R. T.
    Zhou, Y. C.
    Zhang, L.
    Huo, K. L.
    Gan, M.
    APPLIED SURFACE SCIENCE, 2019, 481 : 860 - 871
  • [30] Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings
    Krause, Amanda R.
    Garces, Hector F.
    Dwivedi, Gopal
    Ortiz, Angel L.
    Sampath, Sanjay
    Padture, Nitin P.
    ACTA MATERIALIA, 2016, 105 : 355 - 366